Cystic fibrosis is mostly caused by the F508del mutation, which impairs CFTR protein from exiting the endoplasmic reticulum due to misfolding. VX-809 is a small molecule that rescues F508del-CFTR localization, which recently went into clinical trial but with unknown mechanism of action (MoA). Herein, we assessed if VX-809 is additive or synergistic with genetic revertants of F508del-CFTR, other correctors, and low temperature to determine its MoA. We explored and integrated those various agents in combined treatments, showing how they add to each other to identify their complementary MoA upon correction of F508del-CFTR. Our experimental and modeling data, while compatible with putative binding of VX-809 to NBD1:ICL4 interface, also indicate scope for further synergistic F508del-CFTR correction by other compounds at distinct conformational sites/cellular checkpoints, thus suggesting requirement of combined therapies to fully rescue F508del-CFTR.
The revertant mutations G550E and 4RK [the simultaneous mutation of four arginine-framed tripeptides (AFTs): R29K, R516K, R555K, and R766K] rescue the cell surface expression and function of F508del-cystic fibrosis (CF) transmembrane conductance regulator (-CFTR), the most common CF mutation. Here, we investigate their mechanism of action by using biochemical and functional assays to examine their effects on F508del and three CF mutations (R560T, A561E, and V562I) located within a conserved region of the first nucleotide-binding domain (NBD1) of CFTR. Like F508del, R560T and A561E disrupt CFTR trafficking. G550E rescued the trafficking defect of A561E but not that of R560T. Of note, the processing and function of V562I were equivalent to that of wild-type (wt)-CFTR, suggesting that V562I is not a disease-causing mutation. Biochemical studies revealed that 4RK generates higher steady-state levels of mature CFTR (band C) for wtand V562I-CFTR than does G550E. Moreover, functional studies showed that the revertants rescue the gating defect of F508del-CFTR with different efficacies. 4RK modestly increased F508del-CFTR activity by prolonging channel openings, whereas G550E restored F508del-CFTR activity to wt levels by altering the duration of channel openings and closings. Thus, our data suggest that the revertants G550E and 4RK might rescue F508del-CFTR by distinct mechanisms. G550E likely alters the conformation of NBD1, whereas 4RK allows F508del-CFTR to escape endoplasmic reticulum retention͞retrieval mediated by AFTs. We propose that AFTs might constitute a checkpoint for endoplasmic reticulum quality control. endoplasmic reticulum quality control ͉ folding ͉ membrane traffic ͉ arginine-framed motifs ͉ trafficking signals
Potential biological markers for cystic fibrosis (CF) lung disease were identified by comparative proteomics profiling of nasal cells from deletion of phenylalanine residue 508 (F508del)-homozygous CF patients and non-CF controls. From the non-CF 2-DE gels, 65 spots were identified by MS, and a reference 2-DE map was thus established. The majority of those correspond to ubiquitously expressed proteins. Consistent with the epithelial origin of this tissue, some of the identified proteins are epithelial markers (e.g. cytokeratins, palate lung and nasal epithelium clone protein (PLUNC), and squamous cell carcinoma antigen 1). Comparison of this protein profile with the one similarly obtained for CF nasal cells revealed a set of differentially expressed proteins. These included proteins related to chronic inflammation and some others involved in oxidative stress injury. Alterations were also observed in the levels of cytoskeleton proteins, being probably implicated with cytoskeleton organization changes described to occur in CF-airways. Lower levels were found for some mitochondrial proteins suggesting an altered mitochondrial metabolism in CF. Differential expression was also found for two more enzymes that have not been previously associated to CF. Further studies will clarify the involvement of such proteins in CF pathophysiology and whether they are targets for CF therapy.
In autosomal dominant polycystic kidney disease (ADPKD), cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR). Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV) as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca2+-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.