The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions.
A severe neurotoxicosis, comprising tremors, ataxia, paresis, recumbency and death, occurred simultaneously among several herds of beef cattle in the region of Flanders (Belgium). After a first multi-toxin screening of some suspected diet elements, verruculogen was detected in a sample of a common feed ingredient. However, when the first animal necropsies revealed serious nervous lesions, including neuronal degeneration of the central nervous system and axonal degeneration in the peripheral nervous system, further investigations focused on fungal isolation. As expected from the pathological lesions, Aspergillus clavatus was found to be the dominant fungal species in a sample of compacted fodder, containing malting residues, consumed by all the affected herds. The isolated fungus appeared to produce patulin in culture medium. Traces of patulin were also detected in the fodder. These findings and their possible role in the intoxication are discussed.
A number of toxinogenic fungal species, particularly producers of tremorgenic mycotoxins, have been isolated from traditional fermented meats. Tremorgenic mycotoxins are a group of fungal metabolites known to act on the central nervous system, causing sustained tremors, convulsions, and death in animals. However, the mode of action of these mycotoxins has not been elucidated in detail, and their genotoxic capacity has hardly been investigated. Because genotoxicity is one of the most prominent toxicological end points in food safety testing, we assessed the genotoxicity of five tremorgenic mycotoxins (fumitremorgen B, paxilline, penitrem A, verrucosidin, and verruculogen) associated with molds found in fermented meats. The mycotoxins were tested in two short-term in vitro assays with the use of different genotoxic end points in different phylogenetic systems (the Ames Salmonella/mammalian-microsome assay and the single-cell gel electrophoresis assay of human lymphocytes). According to the results obtained in this study, all of the investigated mycotoxins except penitrem A exhibited a certain degree of genotoxicity. Verrucosidin appeared to have the highest toxic potential, testing positive in both assays. Verruculogen tested positive in the Salmonella/mammalian-microsome assay, and paxilline and fumitremorgen B caused DNA damage in human lymphocytes. The use of fungal starter cultures to avoid tremorgen contamination in fermented meats is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.