The enzymic activity of phytoene desaturase in Nurcissus pseudonarcissus chromoplast membranes depends in an essential way on the redox state of its environment. Here, the main redox-active components are quinones and tocopherols. Quinones (oxidized) act as intermediate electron acceptors in the desaturation reaction, as can be shown in reduced, hydroquinone-rich membranes. However. their complete oxidation by ferricyanide treatment of membranes leads to inhibition of the desaturation activity and, under these conditions, hydroquinones are required for reactivation. Using redox titrations, it is shown here that the optimal activity lies in the range of the midpoint potential of the plastoquinone/plastohydroquinone redox couple. For the adjustment of redox states of the redox-active lipid components in (photosynthetically inactive) chromoplasts, NADPH and oxygen are involved, the latter acting as a terminal acceptor. This results in a respiratory redox pathway i n chromoplast membranes which is described here, to our knowledge, for the first time. Since phytoene desaturation responds to the redox state of quinones, which is adjusted by the respiratory redox pathway, the two reactions must be regarded as being mechanistically linked. The first protein component involved in the respiratory pathway which we have investigated molecularly is a 43-kDa NAD(P)H :quinone oxidoreductase, which is organized as a homodimer (23 -t 3 kDdsubunit) and apparently possesses a manganese redox center. Internal protein microsequencing and cloning of the corresponding cDNA revealed a high degree of similarity to the 23-kDa protein of the oxygen-evolving complex of photosystem 11, but no information about the N-terminal organization of the oxidoreductase could be obtained. During flower development, the steady-state concentration of the corresponding mRNA is up-regulated, indicating a specific function of the gene product in chlorophyll-free chromoplasts.
The genome of Rhodopseudomonas palustris contains five antenna gene clusters, αβa, αβb, αβc, αβd and αβe, which encode the light‐harvesting peripheral antenna complex II polypeptides. The isolation and characterisation of the gene which encodes the αe and βe polypeptides are reported. The primary structure of the βe polypeptide is identical to that of βb whilst the structure of αe is different from the other α subunits so far characterised. All five of the gene clusters were transcribed under high‐light conditions while under low‐light conditions only three were transcribed (αβb, αβd and αβe). Furthermore, Northern‐blot analysis showed that the gene clusters encode RNA transcripts of either 500 or 650 nucleotides. Individual members of the gene family showed a differential response in terms of the regulation of abundance of mRNA upon growth under either high‐light or low‐light intensities. Possible promoter sequences and operator sites upstream of the αβb, αβd and αβe genes were located. Furthermore using puc‐lacZ fusions in trans in R. palustris, we were able to examine the positions of the promoter of the gene clusters. The significance of these observations with respect to the regulation, organization and role of the peripheral antenna is discussed.
A reverse‐phase HPLC System for isolation of the water insoluble alpha‐ and beta‐polypeptides of the light‐harvesting complex II (LH II) of Rhodopseudomonas (Rps.) palustris without employment of any detergent was developed. The material obtained was of high purity and suitable for direct microsequence analysis. Chromatographic analysis could resolve at least two major beta‐polypeptides, beta a and beta b, two major alpha‐polypeptides, alpha a and alpha b, and two additional minor polypeptides. N‐terminal amino acid sequencing shows that the resolved peaks correspond to different polypeptide species and that the minor species have an N‐terminal sequence identical to that of the alpha b polypeptide. An oligonucleotide derived from the amino terminal sequence of the alpha a polypeptide was utilized to screen a genomic library from Rps.palustris. Several independent clones have been characterized by Southern blot and nucleotide sequence analysis. We show that Rps.palustris contains at least four different clusters of beta and alpha genes. Two clones contain sequences potentially coding for beta a‐alpha a and beta b‐alpha b polypeptides; and two additional clones potentially coding for beta and alpha peptides which we named beta c‐alpha c and beta d‐alpha d, which did not correspond to the major purified polypeptides. In addition to the protein chemistry data, the conservation at the amino acid level and the presence of canonical ribosomal binding sites upstream of each of the identified genes strongly suggest that all four coding regions are expressed.
Bacterial accumulation on solid material displays a major source of biomaterial associated infections, cross contamination, and spreading. To overcome these problems, different investigations on surface modifications for the containment of bacterial adhesion have been done. The aim of this research is the development of a rapid and efficient screening procedure to identify and investigate biologically active peptides in an immobilized state in order to produce an antimicrobial surface coating. We figured out that the antimicrobial mode of action is the most important parameter because only peptides with pronounced membrane disruption abilities displayed meaningful activity in an immobilized state. In addition, we highlighted the influence of the coupling reaction chemistry on the activity and amount of the immobilized peptide. Thereupon we developed an optimized antimicrobial surface coating with unrestricted antimicrobial properties by adjusting the immobilization strategy in combination with lowering the necessary peptide amount. Moreover we demonstrated that this antimicrobial surface coating displayed no cytotoxic activity against a eukaryotic cell line and thereby indicates a promising biocompatibility. Furthermore, different antimicrobial peptides obtained either by chemical peptide synthesis or by recombinant DNA technology were used in this study and their activities as well as their potential applications were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.