The present study aimed to evaluate the influence of environmental factors on essential oils (EOs) composition of Origanum compactum populations sampled all over the distribution area of the species in Morocco, and to determine the extent of the chemical profiles throughout the geographical distribution of the species. The chemical compositions were submitted to canonical correlation analysis and canonical discriminant analysis that indicated a significant relationship between oil components and some environmental factors. According to their chemical composition and edapho-climatic characteristics, two major groups of populations were differentiated. The first group was composed of samples growing in regions with humid climate, clayey, sandy, and alkaline soils. These samples showed high thymol, α-terpineol, linalool, and carvacryl methyl oxide content. The second group consisted of plants belonging to semi-arid climate, and growing at high altitudes and silty soils. These samples were characterized by high carvacrol, α-thujene, α-terpinene, and myrcene content. However, populations exposed to sub-humid climate, appeared less homogeneous and belong mainly either to the first or second group. A significant correlation between some edaphic factors (pH, K O content, soil texture) and the EOs yield of O. compactum plants was evidenced. In spite of the correlation obtained for the oil composition with edapho-climatic factors and the variance explained by the environmental data set, the observed EO diversity might be also genetically determined.
Origanum compactum L. (Lamiaceae) is one of the most important medicinal species in term of ethnobotany in Morocco. It is considered as a very threatened species as it is heavily exploited. Its domestication remains the most efficient way to safeguard it for future generations. For this purpose, wide evaluation of the existing variability in all over the Moroccan territory is required. The essential oils of 527 individual plants belonging to 88 populations collected from the whole distribution area of the species in Morocco were analyzed by GC/MS. The dominant constituents were carvacrol (0 - 96.3%), thymol (0 - 80.7%), p-cymene (0.2 - 58.6%), γ-terpinene (0 - 35.2%), carvacryl methyl ether (0 - 36.2%), and α-terpineol (0 - 25.8%). While in the Middle Atlas region and the Central Morocco mainly carvacrol type samples were found, much higher chemotypic diversity was encountered within samples from the north part of Morocco (occidental and central Rif regions). The high chemical polymorphism of plants offers a wide range for selection of valuable chemotypes, as a part of breeding and domestication programs of this threatened species.
Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.
Seed longevity is an important trait for both ex situ genebanks and the seed industry. It is partially determined by genetic factors, but is also dependent on the environmental conditions experienced by the mother plant during seed maturation, as well as those imposed during the post-harvest and storage periods. For practical reasons, the variation in longevity has repeatedly been analysed by treating fresh seed to various induced ageing protocols, but the extent to which these procedures mimic the natural ageing process remains debatable. Here, a comparison was attempted between the wheat genomic regions identified by biparental mapping as harbouring determinants of viability loss identified in grain which had been either aged artificially or had been stored long term. Only one locus proved to be shared, but even here, the parental origin of the positive allele differed. Correlation analysis revealed no relationship between various induced ageing treatments and long-term storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.