We update the results of cloud imaging sequences from the Mars Science Laboratory (MSL) rover Curiosity to complete two Mars years of observations (LS=160° of Mars year (MY) 31 to LS=160° of MY 33). Relatively good seasonal coverage is achieved within the study period, with just over 500 observations obtained, averaging one observation every 2–3 sols. Cloud opacity measurements are made using differential photometry and a simplified radiative transfer method. These opacity measurements are used to assess the interannual variability of the aphelion cloud belt (ACB) for MY 32 and 33. Upon accounting for a statistical bias in the data set, the variation is found to be <30% within uncertainty. Diurnal variation of the ACB is also able to be examined in MY 33 owing to an increased number of early morning observations in this year. Although a gap in data around local noon prevents a complete assessment, we find that cloud opacity is moderately increased in the morning hours (07:00–09:00) compared to the late afternoon (15:00–17:00).
Abstract. Aircraft-based lidar measurements of atmospheric aerosol and ozone were conducted to study air pollution from the oil sands extraction industry in northern Alberta. Significant amounts of aerosol were observed in the polluted air within the surface boundary layer, up to heights of 1 to 1.6 km above ground. The ozone mixing ratio measured in the polluted boundary layer air directly above the oil sands industry was equal to or less than the background ozone mixing ratio. On one of the flights, the lidar measurements detected a layer of forest fire smoke above the surface boundary layer in which the ozone mixing ratio was substantially greater than the background. Measurements of the linear depolarization ratio in the aerosol backscatter were obtained with a ground-based lidar and this aided in the discrimination between the separate emission sources from industry and forest fires. The retrieval of ozone abundance from the lidar measurements required the development of a method to account for the interference from the substantial aerosol content within the polluted boundary layer.
Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24 th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.