This review assesses storm studies over the North Atlantic and northwestern Europe regarding the occurrence of potential long‐term trends. Based on a systematic review of available articles, trends are classified according to different geographical regions, datasets, and time periods. Articles that used measurement and proxy data, reanalyses, regional and global climate model data on past and future trends are evaluated for changes in storm climate. The most important result is that trends in storm activity depend critically on the time period analysed. An increase in storm numbers is evident for the reanalyses period for the most recent decades, whereas most long‐term studies show merely decadal variability for the last 100–150 years. Storm trends derived from reanalyses data and climate model data for the past are mostly limited to the last four to six decades. The majority of these studies find increasing storm activity north of about 55–60° N over the North Atlantic with a negative tendency southward. This increase from about the 1970s until the mid‐1990s is also mirrored by long‐term proxies and the North Atlantic Oscillation and constitutes a part of their decadal variability. Studies based on proxy and measurement data or model studies over the North Atlantic for the past which cover more than 100 years show large decadal variations and either no trend or a decrease in storm numbers. Future scenarios until about the year 2100 indicate mostly an increase in winter storm intensity over the North Atlantic and western Europe. However, future trends in total storm numbers are quite heterogeneous and depend on the model generation used.
While every society can be exposed to heatwaves, some people suffer far less harm and recover more quickly than others from their occurrence. Here we project indicators of global heatwave risk associated with global warming of 1.5 and 2 °C, specified by the Paris agreement, for two future pathways of societal development representing low and high vulnerability conditions. Results suggest that at the 1.5 °C warming level, heatwave exposure in 2075 estimated for the population living in low development countries is expected to be greater than exposure at the warming level of 2 °C for the population living in very high development countries. A similar result holds for an illustrative heatwave risk index. However, the projected difference in heatwave exposure and the illustrative risk index for the low and very high development countries will be significantly reduced if global warming is stabilized below 1.5 °C, and in the presence of rapid social development.
Tropical cyclone (TC) activity for the last three decades shows strong discrepancies, deduced from different best track datasets (BTD) for the western North Pacific (WNP). This study analyzes the reliability of BTDs in deriving climate statistics for the WNP. Therefore, TC lifetime, operational parameters [current intensity (CI) number], and tracks are compared (for TCs identified concurrently) in BTD provided by the Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), and the China Meteorological Administration (CMA).The differences between the BTD are caused by varying algorithms used in weather services to estimate TC intensity. Available methods for minimizing these discrepancies are not sufficient. Only if intensity categories 2-5 are considered as a whole, do trends for annually accumulated TC days show a similar behavior. The reasons for remaining discrepancies point to extensive and not regular usage of supplementary sources in JTWC. These are added to improve the accuracy of TC intensity and center position estimates. Track and CI differences among BTDs coincide with a strong increase in the number of intense TC days in JTWC. These differences are very strong in the period of intensive improvement of spatiotemporal satellite coverage .Scatterometer-based data used as a reference show that for the tropical storm phase JMA provides more reliable TC intensities than JTWC. Comparisons with aircraft observations indicate that not only homogeneity, but also a harmonization and refinement of operational rules controlling intensity estimations, should be implemented in all agencies providing BTD.
This study analyzes future climate for the Mediterranean region projected with the high-resolution coupled CM2.5 model, which incorporates a new and improved land model (LM3). The simulated climate changes suggest pronounced warming and drying over most of the region. However, the changes are distinctly smaller than those of the CMIP5 multi-model ensemble. In addition, the changes over much of southeast and central Europe indicate very modest warming compared to the CMIP5 projections and also a tendency toward wetter conditions. These differences indicate a possible role of factors such as land surface-atmospheric interactions in these regions. Our analysis also highlights the importance of correctly projecting the magnitude of changes in the summer North Atlantic Oscillation, which has the capacity to partly offset anthropogenic warming and drying over the western and central Mediterranean. Nevertheless, the projections suggest a decreasing influence of local atmospheric dynamics and teleconnections in maintaining the regional temperature and precipitation balance, in particular over arid regions like the eastern and southern Mediterranean, which show a local maximum of warming and drying. The intensification of the heat low in these regions rather suggests an increasing influence of warming land surface on the local surface atmospheric circulation and progressing desertification.Published by Copernicus Publications on behalf of the European Geosciences Union.
Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study.The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model, with results slightly closer to reanalysis data for the spectral nudged simulations. On the basis of this regional climate model hindcast study of a single typhoon season, spectral nudging seems to be favourable since it has mostly positive effects on typhoon formation, location and general circulation patterns in the generation areas of TCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.