34 S enrichment (up to 4.7‰) in the mosses tested indicates that these plants responded to environmental pollution stress. Sulphur isotopic composition in the transplanted P. schreberi was related to S concentrations in this species after 90 days of the experiment.
Higher δ34 S values and S concentrations were noted in native mosses than in those transplanted from rural and urban sites while an opposite situation was reported in industrial sites. The transplanted P. schreberi was a better sulphur bioindicator than the native moss in more polluted industrial sites and worse in less polluted rural and urban sites.
SO2, NOx, and metals (including Cd, Cu, Pb, Zn, Mn, Mg, Fe) present in airborne particulate matter are a major threat to preserving good air quality. The complicated pathways and transformation processes that can change their physical/chemical state in the atmosphere renders identifying their origin extremely difficult. With the objective of alleviating this difficulty, we identified and characterized potential local and regional sources of atmospheric pollutants using bioindicators (Hypogymnia physodes) from the Świętokrzyski National Park (SE Poland): 20 lichen samples were collected during winter (February; heating period) and summer (June; vegetative period) seasons and analyzed for metal contents and free radicals concentrations. Our results indicate that the highest gaseous pollutant levels were observed during the heating season, along roads (NO2) and at the highest elevation (SO2). The semiquinone/phenoxyl radical concentrations correlated during the heating season with the atmospheric SO2: ln (free radicals concentrations) = 0.025 SO2atmosphere + 39.11. For Mn/Fe ≥ 2, the electron paramagnetic resonance (EPR) spectra presented a hyperfine splitting. Results showed that since 1994 metal concentrations increased for Cd, Mn, and Mg, Fe remained somewhat constant for Zn and Cu but slightly decreased for Pb, in agreement with the phasing out of lead in gasoline. Finally, a principal component analysis (PCA) identified two main factors controlling variability within the analyzed parameters: air pollutants transport over long distances and local fuel combustion by both transport and home heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.