Respiratory disturbances present in Parkinson's disease (PD) are not well understood. Thus, studies in animal models aimed to link brain dopamine (DA) deficits with respiratory impairment are needed. Adult Wistar rats were lesioned with injection of 6-hydroxydopamine (6-OHDA) into the third cerebral ventricle. Two weeks after hypoxic test was performed in whole-body plethysmography chamber, phrenic (PHR) and hypoglossal (HG) nerve activities were recorded in normoxic and hypoxic conditions in anesthetized, vagotomized, paralyzed and mechanically ventilated rats. The effects of activation and blockade of dopaminergic carotid body receptors were investigated during normoxia in anesthetized spontaneously breathing rats. 6-OHDA injection affected resting respiratory pattern in awake animals: an increase in tidal volume and a decrease in respiratory rate had no effect on minute ventilation. Hypoxia magnified the amplitude and minute activity of the PHR and HG nerve of 6-OHDA rats. The ratio of pre-inspiratory to inspiratory HG burst amplitude was reduced in normoxic breathing. Yet, the ratio of pre-inspiratory time to total time of the respiratory cycle was increased during normoxia. 6-OHDA lesion had no impact on DA and domperidone effects on the respiratory pattern, which indicate that peripheral DA receptors are not affected in this model. Analysis of monoamines confirmed substantial striatal depletion of dopamine, serotonin and noradrenaline (NA) and reduction of NA content in the brainstem. In bilateral 6-OHDA model changes in activity of both nerves: HG (linked with increased apnea episodes) and PHR are present. Demonstrated respiratory effects could be related to specific depletion of DA and NA.
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.