Isoprostanes (IsoPs) are key biomarkers for investigating the role of free radical generation in the pathogenesis of human disorders. To solve IsoPs-related problems with regard to isoprostanes, analytical tools are required. This paper reviews the problems and trends in this field focusing on the methodology for assaying biomarkers in exhaled breath condensate (EBC) samples. A large amount of work has been done in the qualitative and quantitative analysis of IsoPs, but a standardized method has yet to emerge. The methodologies described differ, either in the sample preparation steps or in the detection techniques, or both. Requiring a number of chromatographic steps, the relevant extraction and purification procedures are often critical and time-consuming, and they lead to a substantial loss of target compounds. Recent data show that EBC is a promising non-invasive tool for the evaluation of different diseases. Two main analytical approaches have been adopted for IsoPs measurement: immunological methods and mass spectrometry. The methodologies for the extraction, purification and analysis of IsoPs in EBC samples are presented.
Breath analysis is commonly understood to target gaseous or volatile organic compounds (VOCs) for the characterization of different pathologies. Targeted analysis is most effective if a working hypothesis can be based on a plethora of data. The recently published volatilome builds an optimal basis for organizing powerful target sets. However, the origin and pathways of biosynthesis of many VOCs are not known, which complicates the formulation of useful hypotheses. To find the missing link between VOCs and their origin, it is necessary to analyze their precursor fluids themselves. In order to provide condensation nuclei for the generation of future hypotheses, we provide the compositional space over 23 samples of the unperturbed human exhaled breath condensate (EBC) metabolome. We propose a way to connect the compositional spaces of both VOCs and EBC so as to gain insight into the most probable form of VOC precursors. In a way analogous to tandem MS it is possible to create a mass difference network over compositional data by linking compositions with mass differences that are designed to mimic biochemical reactions. We propose to use mass difference enrichment analysis (MDEA) in order to mine probable relations between VOCs and their precursor fluids. We have found 2691 EBC compositions and linked them to 235 breath VOC compositions that correspond to 848 individual compounds. We found that VOCs are likely to be found as hexose conjugates or as amino acid conjugates with Glutamine or Asparagine playing a major role. Furthermore, we found that dicarboxylic acid mass differences may be more indicative for oxidative stress than oxygenation-hydrogenation sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.