BackgroundMicroRNAs act as molecular regulator of cell signaling, plant growth and development, and regulate various primary and secondary plant metabolic processes. In the present study, deep sequencing of small RNAs was carried out to identify known and novel miRNAs from pharmaceutically important plant, Chlorophytum borivilianum.ResultsTotal 442 known miRNAs and 5 novel miRNAs were identified from young leaf small RNA library. Experimental validation with stem loop RT-PCR confirmed the in silico identification. Based on transcriptome data of root and leaf of C. borivilianum, Oryza sativa, and Arabidopsis thaliana target gene prediction was done using psRNAtarget and mirRanda. BLAST2GO helped in localization of predicted targets and KEGG (Kyoto Encyclopedia for Genes and Genomes) pathway analysis concluded that miR9662, miR894, miR172, and miR166 might be involved in regulating saponin biosynthetic pathway. The correlation between miRNA and its target gene was further validated by RT-qPCR analysis.ConclusionThis study provides first elaborated glimpse of miRNA pool of C. borivilianum, which can help to understand the miRNA dependent regulation of saponin biosynthesis and to design further metabolic engineering experiment to enhance their contents in the plant.Electronic supplementary materialThe online version of this article (10.1186/s12870-017-1214-0) contains supplementary material, which is available to authorized users.
Chlorophytum borivilianum is a critically endangered plant well known for its medicinal properties for diabetes mellitus, diarrhea, arthritis, sterility, and erectile dysfunction, etc. Due to low viability and long dormancy of seeds, in vitro regeneration is required for large scale cultivation of this plant. In the present study, direct plant regeneration was optimized using flower stalk as explant. Nodal segments of flower stalk were sterilized and kept for direct regeneration on different combinations of BAP and KIN supplemented media. The highest, 15.27 ± 1.14 number of shoots were produced on medium containing BAP (2 mg/L) per nodal segment. The multiple shoot clumps regenerated from flower stalk were separated carefully and kept on rooting media. A maximum of 16.87 ± 1.53 roots per plant was observed in MS media having 0.5 mg/L of NAA. The rooted plantlets were shifted into the pot containing soilrite for hardening and acclimatization. The genetic stability of hardened plants was confirmed by start codon targeted, and inter simple sequence repeats molecular markers. All the 18 randomly selected plantlets showed similar genetic homogeneity to the mother plant. It is the first report on in vitro regeneration along with the genetic fidelity analysis of the regenerated plantlets from flower Stalk of C. borivilianum. As the standardized method of regeneration and mass multiplication is quite efficient and genetically stable, the protocol will be useful for the large-scale production of C. borivilianum to meet the market demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.