Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 °C, 25 °C, and 28 °C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects.
Climate change, and in particular the increase in temperature we are currently observing, can affect herbivorous insects. Aphids, as poikilothermic organisms, are directly exposed to temperature increases that influence their metabolism. Heat stress causes disturbances between the generations and the neutralization of reactive oxygen species (ROS). The aim of this work is focused on explaining how the aphid, using the example of Aphis pomi, responds to abiotic stress caused by temperature increase. The experiment was carried out under controlled conditions at three temperatures: 20, 25, and 28 °C. In the first stage, changes in the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) were determined in aphid tissues, at each temperature. In the second stage, microcalorimetry monitored changes in heat emitted by aphids, at each temperature. Our results showed that A. pomi defense responses varied depending on temperature and were highest at 28 °C. The flexible activity of enzymes and increase in the metabolic rate played the role of adaptive mechanisms and ran more effectively at higher temperatures. The A. pomi thus protected itself against ROS excessive induction and the aphids were able to respond quickly to environmental stress.
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.