Polypeptoids have recently emerged as a subject of scientific interest due to their structural resemblance to existing pseudo-peptidic polymers including poly(αpeptide)s, poly(β-peptide)s, poly(2-oxazoline)s, and poly(Nsubstituted acrylamide)s. With demonstrated backbone degradability, biocompatibility, and thermal processability, polypeptoids are potentially useful in a variety of biotechnological applications. Before those applications can be realized, it is important to develop their synthesis and understand their fundamental properties. In this Perspective, we will review recent advances in the synthesis and characterization of polypeptoids and their copolymers as well as the development of polypeptoid-based functional and structured materials. We will conclude by discussing the future prospects for this nascent class of pseudo-peptidic polymers.
Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA.
Traditionally, drug discovery and development research have been primarily focused on the mitigation of disease treatment for the general adult population, often overlooking the medical needs of pediatric patients. While remarkable progress toward the discovery of better medicines has been made, the pharmacological differences between children and adults are often neglected as part of the translation process. In fact, until recently, children have been considered therapeutic orphans due to the lack of significant drug discovery, formulation development, and dosage form design specifically tailored for pediatric patients. Perhaps the least understood is the significant physiological changes that occur during the maturation process from birth to adulthood. It requires careful considerations to achieve age-specific-desired therapeutic outcomes with minimal toxicity. This introduces considerable risk into the preclinical and clinical testing of new medicaments, which until recently, was avoided based on the conventional approach where a demonstration of safe and efficacious use in adults over several years potentially would minimize the chance of adverse juvenile responses. However, the lack of appropriate drug products for children has led to off-label use of adult medicines with potential life-threatening adverse reactions and health complications. Recent developments and future considerations regarding pediatric drug discovery and development using a patient-centric approach in the context of ontogenic biopharmaceutical considerations are discussed below.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.