There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.
The Internet connects hundreds of millions of computers across the world running on multiple hardware and software platforms providing communication and commercial services. However, this interconnectivity among computers also enables malicious users to misuse resources and mount Internet attacks. The continuously growing Internet attacks pose severe challenges to develop a flexible, adaptive security oriented methods. Intrusion detection system (IDS) is one of most important component being used to detect the Internet attacks. In literature, different techniques from various disciplines have been utilized to develop efficient IDS. Artificial intelligence (AI) based techniques plays prominent role in development of IDS and has many benefits over other techniques. However, there is no comprehensive review of AI based techniques to examine and understand the current status of these techniques to solve the intrusion detection problems. In this paper, various AI based techniques have been reviewed focusing on development of IDS. Related studies have been compared by their source of audit data, processing criteria, technique used, dataset, classifier design, feature reduction technique employed and other experimental environment setup. Benefits and limitations of AI based techniques have been discussed. The paper will help the better understanding of different directions in which research has been done in the field of IDS. The findings of this paper provide useful insights into literature and are beneficial for those who are interested in applications of AI based techniques to IDS and related fields. The review also provides the future directions of the research in this area.
Image classification is getting more attention in the area of computer vision. During the past few years, a lot of research has been done on image classification using classical machine learning and deep learning techniques. Presently, deep learningbased techniques have given stupendous results. The performance of a classification system depends on the quality of features extracted from an image. The better is the quality of extracted features, the more the accuracy will be. Although, numerous deep learning-based methods have shown enormous performance in image classification, still due to various challenges deep learning methods are not able to extract all the important information from the image. This results in a reduction in overall classification accuracy. The goal of the present research is to improve the image classification performance by combining the deep features extracted using popular deep convolutional neural network, VGG19, and various handcrafted feature extraction methods, i.e., SIFT, SURF, ORB, and Shi-Tomasi corner detector algorithm. Further, the extracted features from these methods are classified using various machine learning classification methods, i.e., Gaussian Na茂ve Bayes, Decision Tree, Random Forest, and eXtreme Gradient Boosting (XGBClassifier) classifier. The experiment is carried out on a benchmark dataset Caltech-101. The experimental results indicate that Random Forest using the combined features give 93.73% accuracy and outperforms other classifiers and methods proposed by other authors. The paper concludes that a single feature extractor whether shallow or deep is not enough to achieve satisfactory results. So, a combined approach using deep learning features and traditional handcrafted features is better for image classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.