We conclude that vitamin E metabolism and not TTP controls γT concentrations in vivo and observed an interaction of TTP with vitamin E metabolism that results in reduced production of the metabolite γ-CEHC.
Ciliary neurotrophic factor (CNTF) signals via a receptor complex consisting of the specific CNTF receptor (CNTFR) and two promiscuous signal transducers, gp130 and leukemia inhibitory factor receptor (LIFR). Whereas earlier studies suggested that the signaling complex is a hexamer, more recent analyses strongly support a tetrameric structure. However, all studies so far analyzed the stoichiometry of the CNTF receptor complex in vitro and not in the context of living cells. We generated and expressed in mammalian cells acyl carrier protein-tagged versions of both CNTF and CNTFR. After labeling CNTF and CNTFR with different dyes we analyzed their diffusion behavior at the cell surface. Fluorescence (cross) correlation spectroscopy (FCS/FCCS) measurements reveal that CNTFR diffuses with a diffusion constant of about 2 x 10(-9) cm(2) s(-1) independent of whether CNTF is bound or not. FCS and FCCS measurements detect the formation of receptor complexes containing at least two CNTFs and CNTFRs. In addition, we measured Förster-type fluorescence resonance energy transfer between two differently labeled CNTFs within a receptor complex indicating a distance of 5-7 nm between the two. These findings are not consistent with a tetrameric structure of the CNTFR complex suggesting that either hexamers and or even higher-order structures (e.g. an octamer containing two tetramers) are formed.
A food that has been praised for its beneficial effects on overall health is fish, particularly its polyunsaturated n-3 fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). However, it has recently been suggested that minor fatty acids such as furan fatty acids are needed in combination with DHA and EPA to exert these positive effects of fish and fish oils. Only recently have furan fatty acids become available in quantities that allow the investigation of their biofunctional properties. In this study, the uptake and effect of the furan fatty acid 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid (9M5) as a sole component and in combination with DHA and EPA on adipogenesis were analyzed using the 3T3-L1 cell model. 9M5 is taken up and metabolized into 7M5, 5M5, and 3M5 in 3T3-L1 adipocytes during a 24-h period as shown with gas chromatography with mass spectrometry (GC/MS). Furthermore, 9M5 significantly increased lipid accumulation during the differentiation process of 3T3-L1 preadipocytes into adipocytes. In addition, the combinations of DHA + 9M5 and EPA + DHA + 9M5 also exerted a significant increase compared to control adipocytes. 3T3-L1 cells incubated with 9M5 resulted in an increased protein expression of PPARγ, C/EBPα, FABP4, and adiponectin, although not to the extent that DHA as a sole component or DHA + 9M5 did. Earlier studies have shown that DHA is a natural ligand for PPARγ, thus being a potential alternative to the antidiabetic thiazolidinediones. We show that 9M5 activates a PPARγ-responsive reporter gene and could therefore be a natural ligand for PPARγ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.