The Oscillibacter type strain has valeric acid as its main metabolic end product, a homolog of neurotransmitter GABA, while Alistipes has previously been shown to be associated with induced stress in mice. In conclusion, the taxonomic correlations detected here may therefore correspond to mechanistic models.
SummaryBackgroundDysbiosis is associated with many diseases, including irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD), obesity and diabetes. Potential clinical impact of imbalance in the intestinal microbiota suggests need for new standardised diagnostic methods to facilitate microbiome profiling.AimTo develop and validate a novel diagnostic test using faecal samples to profile the intestinal microbiota and identify and characterise dysbiosis.MethodsFifty‐four DNA probes targeting ≥300 bacteria on different taxonomic levels were selected based on ability to distinguish between healthy controls and IBS patients in faecal samples. Overall, 165 healthy controls (normobiotic reference collection) were used to develop a dysbiosis model with a bacterial profile and Dysbiosis Index score output. The model algorithmically assesses faecal bacterial abundance and profile, and potential clinically relevant deviation in the microbiome from normobiosis. This model was tested in different samples from healthy volunteers and IBS and IBD patients (n = 330) to determine the ability to detect dysbiosis.ResultsValidation confirms dysbiosis was detected in 73% of IBS patients, 70% of treatment‐naïve IBD patients and 80% of IBD patients in remission, vs. 16% of healthy individuals. Comparison of deep sequencing and the GA‐map Dysbiosis Test, (Genetic Analysis AS, Oslo, Norway) illustrated good agreement in bacterial capture; the latter showing higher resolution by targeting pre‐determined highly relevant bacteria.ConclusionsThe GA‐map Dysbiosis Test identifies and characterises dysbiosis in IBS and IBD patients, and provides insight into a patient's intestinal microbiota. Evaluating microbiota as a diagnostic strategy may allow monitoring of prescribed treatment regimens and improvement in new therapeutic approaches.
Current three-dimensional (3D) genome modeling platforms are limited by their inability to account for radial placement of loci in the nucleus. We present Chrom3D, a user-friendly whole-genome 3D computational modeling framework that simulates positions of topologically-associated domains (TADs) relative to each other and to the nuclear periphery. Chrom3D integrates chromosome conformation capture (Hi-C) and lamin-associated domain (LAD) datasets to generate structure ensembles that recapitulate radial distributions of TADs detected in single cells. Chrom3D reveals unexpected spatial features of LAD regulation in cells from patients with a laminopathy-causing lamin mutation. Chrom3D is freely available on github.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1146-2) contains supplementary material, which is available to authorized users.
Summary Knowledge of the composition of a normal healthy gut microbiota during infancy is important for understanding the role of gut microbiota in disease. A limitation of previous studies is that they are based on infants who have been subject to factors which can have a profound disruptive effect on the natural colonization process. We describe the colonization process, during the first four months after birth, in 85 infants who have experienced no major medical or dietary interventions. They were all vaginally delivered, healthy, term infants, who were not exposed to antibiotics, exclusively breastfed during their first month of life and at least partially breastfed up to four months. Selected microbial groups were identified by targeting small subunit microbial ribosomal RNA genes. In contrast to more recent studies, but in agreement with older studies, almost all our infants harbored γ-proteobacteria and Bifidobacterium..Yet undefined non-cultivable species belonging to Bacteroides, as well as microbes identified as Lachnospiraceae 2, were common. Strong associations were observed between some specific constituents of microbiota at day 4 and the concentration of specific microbial groups at day 120, indicating that early gut microbiota may influence later microbiota. Novel information of the undisturbed composition of early gut microbiota in babies is presented.
Transition from an infant to an adult associated gut microbiota with age through establishment of strict anaerobic bacteria remains one of the key unresolved questions in gut microbial ecology. Here a comprehensive comparative analysis of stool microbiota in a large cohort of mothers and their children sampled longitudinally up until 2 years of age using sequencing analysis tool was presented that allows realistic microbial diversity estimates. In this work, evidence for the switch from children to adult associated microbial profile between 1 and 2 years of age was provided, suggestively driven by Bifidobacterium breve. An Operational Taxonomic Unit (OTU) belonging to B. breve was highly prevalent in the population throughout the first year of life, and was negatively associated with detection of a range of adult-like OTUs. Although an adult profile was not fully established by 2 years of age, it was demonstrated that with regards to the most prevalent OTUs, their prevalence in the child population by then already resembled that of the adult population. Taken together, it was proposed that late-colonizing OTUs were recruited at a later stage and were not acquired at birth with the recruitment being controlled by gatekeeping OTUs until the age of 1 year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.