Extracts of Ruscus aculeatus L., known as butcher's broom, are mainly used for the treatment of chronic venous insufficiency (CVI). In a recent study on the phenolic compounds of Rusci rhizoma, new phenyl‐1‐benzoxepinols were isolated. As the therapeutic effect of butcher's broom is ascribed to the pharmacological activity of the main constituents, steroidal saponins and their aglycones the ruscogenins, the role of the newly identified compounds was of interest. Owing to the low availability of the compounds by isolation, we synthesized them for pharmacological testing. In an ORAC–fluorescein assay they revealed a significant antioxidative activity, which may contribute to the anti‐inflammatory properties of the phenolic fraction obtained from Rusci rhizoma extracts.
Three novel N-(α-bromoacyl)-α-amino esters: methyl 2-(2-bromo-3-methylbutanamido)pentanoate (1), methyl 2-(2-bromo-3-methylbutanamido)-2-phenylacetate (2) and methyl 2-(2-bromo-3-methylbutanamido)-3-phenylpropanoate (3) were synthesized. Single crystal X-ray diffraction data are reported for compounds 1 and 2. The cytotoxicity, antiinflammatory and antibacterial activity of compounds 1-3 were investigated. Additionally, the physico-chemical properties of studied compounds were calculated and an in silico toxicological study of compounds 1-3 was performed. The low level of cytotoxicity and absence of antibacterial and anti-inflammatory activity of 1-3 in tested concentrations might be a beneficial prerequisite for their incorporation in prodrugs.
Flavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line. Investigation of the deglucuronidation rates by HPLC revealed a significant influence of the glucuronidation position on enzyme activity for flavonols. Across the flavonoid subtypes, the C-ring saturation also showed a significant influence on deglucuronidation, whereas A- and B-ring variations within the flavone-7-O-glucuronides did not affect the enzymes' activity. Results were compared to computational binding studies on human β-glucuronidase. Additionally, molecular modeling and dynamic studies were performed to obtain detailed insight into the binding and cleavage mode of the substrate at the active site of the human β-glucuronidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.