The objective of the present work is to investigate experimentally the deposition of micron-sized particles onto the surface of a microsieve membrane, which consists in a thin screen with patterned circular holes. A dilute suspension of spherical, monodisperse, polystyrene particles flows at an imposed flow rate through the membrane, in a frontal filtration mode ͑i.e., the flow direction is perpendicular to the membrane͒. The particle-to-pore diameter ratio is inferior to one. The particle and flow Reynolds numbers are both smaller than 0.1 for the flow regimes investigated in the present study. The particles are non-Brownian, inertialess, and their buoyancy is negligible. Direct visualizations of the membrane are made using video microscopy. A statistical analysis of the particle deposition locations, based on an automatic processing of video images of the membrane surface recorded during the experiment, is made possible by the periodicity of the pore distribution. Experiments show the existence of two preferential locations for particle deposition, for the whole range of flow rates investigated in the present study and the three microsieve patterns used. This puzzling result is discussed in the light of earlier theoretical and numerical simulations works, dealing with the low Reynolds number motion of a single particle in the vicinity of a pore, in the presence of physicochemical interactions between the particle and the membrane surface.
The integration of passive components on silicon for future DC-DC converters applications is still a challenging area of research. This paper reports the microfabrication of a fully integrated filter containing a spiral inductor on top of a 3D capacitor. A thin magnetic shielding layer is introduced between the two components demonstrating that losses caused by the inductor in the capacitor area are reduced, thus increasing the maximum working frequency of the whole component. The fabricated filter was characterized in a test circuit (buck-type converter).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.