Statistical relationships were established between the fate of C and N from 47 types of crop residues and their biochemical characteristics during a soil incubation at 15°C. The incubations were carried out under nonlimiting N in order to differentiate the effects of biochemical characteristics of residues from those of soil N availability. Depending on the residue, the apparent mineralization of residue C after 168 d varied from 330 to 670 g kg−1 of added C. Mineralization kinetics were described using a two‐compartment decomposition model that decomposes according to first‐order kinetics. Amounts of C mineralized after 7 d and the decomposition rate coefficient of the labile fraction were related mainly to the soluble C forms of the residue. No statistical relationship was established between the N concentration of residues and their decomposition in the soil. The incorporation of crop residues into soil led to various soil mineral N dynamics. Two residues caused net N mineralization from the time of their incorporation, whereas all the others induced net N immobilization (1–33 g N kg−1 of added C). After 168 d, only residues with a C/N ratio <24 induced a surplus of mineral N compared with the control soil. The mineral N dynamics were related mainly to the organic N concentration of the residues and to their C/N ratio. At the start of incubation, these dynamics were also influenced by the presence of polyphenols in the plant tissues. Finally, this study showed the need to include the biochemical quality of crop residues in any C and N transformation models that describe decomposition. In contrast, the N concentration or C/N ratio of the residues are sufficient to predict the net effects of crop residues on soil mineral N dynamics.
An indicator to evaluate the proportion of exogenous organic matter (EOM) remaining in soils over the long-term after application has been developed. A database was constructed with analytical data corresponding to 83 EOMs, including sludges, composts, animal wastes, mulches, plant materials and fertilizers. The data included results of proximal analysis (soluble, SOL, hemicellulose-, HEM, cellulose-, CEL, and lignin-like, LIC, fractions, in g kg-1 total organic matter) and of carbon (C) mineralization during long-term incubations under laboratory conditions (in g kg-1 exogenous organic C, EOC). The potential residual organic C after EOM application to soil was assessed from the extrapolation of the incubation results. Then, partial least square regression was used to relate EOM characteristics to the proportion of potentially residual organic C previously determined from the incubations. The biochemical fractions of EOM were not predictive enough to develop the indicator. The proportion of organic C mineralized during 3 days of incubation (C3d) was cumulated and appeared to be the most predictive variable of residual organic C. The proposed indicator of residual organic carbon in soils (expressed as g EOC kg-1) was IROC = 445 + 0.5 SOL - 0.2 CEL + 0.7 LIC - 2.3 C3d. The indicator was calculated for the main types of EOM applied to soils. When compared with the few field data of residual C measured in long-term field experiments, the values provided by the indicator seemed to be over-estimated (i.e. EOC degradation could be faster under field conditions than during laboratory incubations)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.