Abstract. Plant-soil feedback affects performance and competitive ability of individual plants. However, the importance of plant-soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six earlysuccessional plant species of secondary succession on ex-arable land induced plant-specific changes in soil community composition. Following one growth cycle of conditioning the soil community, soil feedback effects were assessed as plant performance in soil of their own as compared to soil from a mixture of the other five early-successional species. Performance was tested in monocultures and in mixed communities with heterospecific competition from midsuccessional species. The role of soil microorganisms was determined by isolating the microbial component from the soil community, re-inoculating microorganisms into sterilized substrate, and analyzing plant biomass responses of the early-and mid-successional species.Plant-soil feedback responses of the early-successional species were negative and significantly increased when the plants were grown in a competitive environment with heterospecifics. In monocultures, three early-successional species experienced negative feedback in soil with a history of conspecifics, while all early-successional species experienced negative feedback when grown with interspecific competition. Interestingly, the nonnative forb Conyza canadensis showed the weakest soil feedback effect. Biomass production of the earlysuccessional plant species was profoundly reduced by the microbial inocula, most strongly when exposed to inocula of conspecific origin. Molecular characterization of the fungal and bacterial rhizosphere communities revealed a relationship between plant biomass production and the composition of the dominant fungal species. Furthermore, our results show that, in early secondary succession, the early-successional plant species induce changes in the soil microbial community composition that cause historical contingency effects in dominance patterns of mid-succession plant communities.We conclude that feedback between early-successional plant species and soil microorganisms can play a crucial role in breaking dominance of early-successional plant communities. Moreover the influences on soil microorganism community composition influenced plant community dynamics in the mid-successional plant communities. These results shed new light on how feedback effects between plants and soil organisms in one successional stage result in a biotic legacy effect, which influences plant community processes in subsequent successional stages.
Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.
Summary• Nutrient hot spots in the soil have a limited life span, but the costs and benefits for root foraging are still underexposed. We assessed short-term costs that may arise when a nutrient-rich patch induces root proliferation, but then rapidly disappears.• Rumex palustris plants were grown with a homogeneous or a heterogeneous nutrient application. After root proliferation in a nutrient-rich patch, nutrient supply was switched from homogeneous to heterogeneous, and vice versa, or the patch location was changed.• R. palustris proliferated its roots in the rich patch. After switching, the relative growth rates of the roots were adjusted to the novel pattern of nutrient availability. However, the changes in local root biomass lagged behind the rapid shift in nutrient supply, because the root mass realized in specific sectors could not be rapidly relocated. Despite this, R. palustris did not exhibit costs of switching in terms of biomass or nitrogen uptake.• Our data suggest that rapid shifts in uptake rate and redistribution of nitrogen within the plant may have lowered the costs of incorrect root placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.