Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Honey bee linkage map
The meiotic map of the honey bee is presented, including the main features that emerged from comparisons with the sequence-based physical map. The map is based on 2,008 markers and is about 40 M long, corresponding to a recombination rate of 22 cM/Mb.
Abstract Background: The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes.
We studied mitochondrial DNA variation in the European rabbit through the examination of restriction fragment length polymorphism in 526 individuals from 20 locations spread across the Iberian Peninsula. Digestion with eight enzymes of a 1120-bp fragment comprising most of the cytochrome b gene resolved 38 dierent haplotypes. These haplotypes were distributed in two highly divergent clades, with dierent but overlapping geographical distributions, and with comparable levels of within-clade variation. The overall phylogeographical pattern suggests a history of long-term regional isolation of two groups of rabbit populations, compatible with the recognition of two subspecies within the Iberian Peninsula, followed by recent contact and admixture. The underlying cause is sought in the alternation of glacial and interglacial periods in the late Pleistocene.
Detailed restriction maps (40 cleavage sites on average) of mitochondrial DNAs (mtDNAs) from the eight species of the melanogaster species subgroup of Drosophila were established. Comparison of the cleavage sites allowed us to build a phylogenetic tree based on the matrix of nucleotide distances and to select the most parsimonious network. The two methods led to similar results, which were compared with those in the literature obtained from nuclear characters. The three chromosomally homosequential species D. simulans, D. mauritiana, and D. sechellia are mitochondrially very related, but exhibit complex phylogenetic relationships. D. melanogaster is their closest relative, and the four species form a monophyletic group (the D. melanogaster complex), which is confirmed by the shared unusual length of their mt genomes (18-19 kb). The other four species of the subgroup (D. yakuba, D. teissieri, D. erecta, and D. orena) are characterized by a much shorter mt genome (16-16.5 kb). The monophyletic character of the D. yakuba complex, however, is questionable. Two species of this complex, D. yakuba and D. teissieri, are mitochondrially indistinguishable (at the level of our investigation) in spite of their noticeable allozymic and chromosomal divergence. Finally, mtDNA distances were compared with the nuclear-DNA distances thus far established. These sequences seem to evolve at rather similar rates, the mtDNA rate being barely double that of nuclear DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.