Species of the genus Streptomyces are known for their ability to produce multiple secondary metabolites; their genomes have been extensively explored to discover new bioactive compounds. The richness of genomic data currently available allows filtering for high quality genomes, which in turn permits reliable comparative genomics studies and an improved prediction of biosynthetic gene clusters (BGCs) through genome mining approaches. In this work, we used 121 genome sequences of the genus Streptomyces in a comparative genomics study with the aim of estimating the genomic diversity by protein domains content, sequence similarity of proteins and conservation of Intergenic Regions (IGRs). We also searched for BGCs but prioritizing those with potential antibiotic activity. Our analysis revealed that the pan-genome of the genus Streptomyces is clearly open, with a high quantity of unique gene families across the different species and that the IGRs are rarely conserved. We also described the phylogenetic relationships of the analyzed genomes using multiple markers, obtaining a trustworthy tree whose relationships were further validated by Average Nucleotide Identity (ANI) calculations. Finally, 33 biosynthetic gene clusters were detected to have potential antibiotic activity and a predicted mode of action, which might serve up as a guide to formulation of related experimental studies.
Summary
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram‐positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.