Because of its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic clinics. However, delayed fracture in the oral cavity has been observed. The susceptibility of a Ni–Ti shape-memory alloy toward hydrogen embrittlement has been examined with respect to the current densities and aging in air at room temperature. Orthodontic wires have been cathodically hydrogen charged using a different current density of 5, 10, and 20 A/m2 from 2 to 24 h in 0.9% NaCl aqueous solution at room temperature. The critical stress for the martensite transformation under a monotonous tensile test has been 20–90 MPa higher than that without hydrogen charging. In addition, embrittlement takes place in the austenite–martensite transformation plateau. For a short period of charging, the Ni–Ti alloy conserves its superelastic behavior. However, after 24 h of aging in air at room temperature, fracture at the austenite–martensite transformation plateau takes place earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.