Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress.
IntroductionThe retinal pigment epithelium (RPE) is a polarized, cuboidal epithelial cell layer situated in the outer retina between the photoreceptors and choroidal vasculature. The RPE supplies an estimated 60% of the glucose consumed by the neural retina (1) and performs a variety of other functions crucial for retinal homeostasis, including delivery of amino acids and docosahexaenoic acid for photoreceptor protein and membrane synthesis; transport, storage, and enzymatic conversion of retinoids essential for phototransduction; regulation of fluid and ion balance in the subretinal space; maintenance of the blood retinal barrier; secretion of growth factors; and phagocytosis of shed photoreceptor outer segment membranes (2). The RPE is a postmitotic tissue, so RPE cells must carry out these functions for the life of an individual.The retinal degenerative consequences of mutations in RPEexpressed genes illustrate the importance of the RPE for photoreceptor viability in humans. Mutations that impair production of the chromophore 11-cis retinal cause Leber congenital amaurosis, retinitis pigmentosa (RP), and allied disorders (3). Disruption of RPE phagocytosis causes RP and rod/cone dystrophy (4, 5). Mutations that affect ion channel function cause disease of the specialized retinal region necessary for high-acuity vision (the macula) (6) as well as RP (7), while mutations in genes encoding the RPE-secreted proteins TIMP3 (8) and EFEMP1 (9) cause lateronset macular disease.
Ruminants are unevenly distributed across the range of body sizes observed in herbivorous mammals; among extant East African species they predominate, in numbers and species richness, in the medium body sizes (10-600 kg). The small and the large species are all hind-gut fermenters. Some medium-sized hind-gut fermenters, equid perissodactyls, coexist with the grazing ruminants, principally bovid artiodactyls, in grassland ecosystems. These patterns have been explained by two complementary models based on differences between the digestive physiology of ruminants and hind-gut fermenters. The Demment and Van Soest (1985) model accounts for the absence of ruminants among the small and large species, while the Bell/Janis/Foose model accounts both for the predominance of ruminants, and their co-existence with equids among the medium-sized species (Bell 1971; Janis 1976; Foose 1982). The latter model assumes that the rumen is competitively superior to the hind-gut system on medium quality forages, and that hind-gut fermenters persist because of their ability to eat more, and thus to extract more nutrients per day from high fibre, low quality forages. Data presented here demonstrate that compared to similarly sized grazing ruminants (bovids), hind-gut fermenters (equids) have higher rates of food intake which more than compensate for their lesser ability to digest plant material. As a consequence equids extract more nutrients per day than bovids not only from low quality foods, but from the whole range of forages eaten by animals of this size. Neither of the current nutritional models, nor refinements of them satisfactorily explain the preponderance of the bovids among medium-sized ungulates; alternative hypotheses are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.