Although poly(butylene succinate)/β-tricalcium phosphate (PBSu/TCP) composites are biocompatible and allow the growth and osteogenic differentiation of stem cells, cell attachment and adhesion to the PBSu-based substrates is often limited. To enhance cell adhesion and proliferation, we used a sodium hydroxide (NaOH) hydrolysis technique to generate a different degree of roughness on PBSu/TCP substrates with different PBSu:TCP ratios. The results showed that NaOH hydrolysis increased surface roughness of PBSu/TCP substrates in a concentration-dependent manner. Substrates with higher ratios of TCP:PBSu provided more porous topography after NaOH hydrolysis, with a substrate containing 40 wt % TCP (PBSu/TCP-6040) hydrolyzed with 1.5M NaOH (HPBSu/TCP-6040-1.5) showing the highest degree of roughness. As with the roughness, PBSu/TCP surface hydrophilicity was positively affected by the increasing NaOH concentration and TCP incorporation. Stem cells adhered best on HPBSu/TCP-6040-1.5 with three-dimensionally elongated cell extensions. Moreover, the HPBSu/TCP-6040-1.5 substrate most significantly facilitated stem cell actin cytoskeleton reorganization and vinculin-positive focal adhesion formation when compared with the other substrates tested. HPBSu/TCP-6040-1.5 also demonstrated the greatest increase in cell proliferation when compared with the other substrates studied. In conclusion, the results have shown that among various substrates tested, HPBSu/TCP-6040-1.5 provided the best support for stem cell adhesion and proliferation, suggesting its potential use in bone engineering.
Long-term clinical success of a titanium implant not only depends upon osseointegration between implant and bone surface but also on the response of host immune cells. Following implantation of biomaterials, an inflammatory response, including T lymphocyte response, is ostensibly initiated by implant-cell interaction. However, little is known about the responses of T lymphocytes to titanium dioxide nanotubes. The present study aimed to explore the effect of titanium dioxide nanotubes on T lymphocytes in vitro and its biological consequences. The results of the present study showed that titanium dioxide nanotubes with diameter of 30–105 nm were non-cytotoxic to T lymphocytes, and the 105 nm titanium dioxide nanotube surface specifically possessed an ability to activate T lymphocytes, thus increasing DNA synthesis and cell proliferation. In addition, the 105 nm titanium dioxide nanotubes significantly activated the expression of FGF-2 gene and protein in T lymphocytes although smaller nanotubes (i.e. those with diameters of approximately 30 and 70 nm) had little effect on this. The present study investigated the mechanism by which 105 nm nanotubes stimulated FGF-2 expression in T lymphocytes by blocking key MAPK pathways. The inhibitors of JNK1/2/3 and ERK1/2 significantly inhibited 105 nm titanium dioxide nanotubes-induced FGF-2 expression. Corresponding to the increased expression of FGF-2, only the supernatant from T lymphocytes cultured on 105 nm nanotubes stimulated human mesenchymal stem cell proliferation. FGF-2 blocking antibody partially reversed the increased proliferation of human mesenchymal stem cells, supporting the role of T lymphocyte-derived FGF-2 in enhanced human mesenchymal stem cell proliferation. This suggests a significant role of T lymphocyte-titanium dioxide nanotube interaction in the proliferation of human mesenchymal stem cells, which is pivotal to the formation of new bone following implant placement.
Periodontal ligament (PDL) cells help maintain tissue homeostasis by balancing PDL tissue inflammation and regeneration. However, the mechanisms by which interferon γ (IFNγ) modulate this process are not yet fully understood. The present study aimed to examine the effect of primed and non-primed PDL cells with IFNγ on the viability and differentiation of T lymphocytes and its functional consequences. The results showed that IFNγ-primed PDL cells possessed enhanced immunosuppression by suppressing T-lymphocyte viability and directing T-lymphocyte differentiation towards a higher T helper (Th) Th2/Th1 ratio. Suppression of T-cell viability was mainly mediated by IFNγ-inducible secreted mediators, which was prevented in the presence of direct cell contact, probably by intercellular adhesion molecule-1 (ICAM-1)-induced PI3 K-mediated transforming growth factor β1 expression in PDL cells. By contrast, ICAM-1 activation augmented IFNγ-induced IFNγ and interleukin-6 expression in PDL cells, which in turn modulated T-cell differentiation. The resulting interaction between these two cell types activated macrophage and suppressed osteoclast differentiation. In conclusion, the results have shown, for the first time to our knowledge, that primed and non-primed PDL cells with IFNγ differentially control T-cell responses via IFNγ-inducible mediators and ICAM-1-mediated direct cell contact, suggesting the role of PDL cells in shifting an inflammatory phase towards a regenerative phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.