SummaryShiga toxins (Stxs) expressed by the enteric pathogens Shigella dysenteriae 1 and enterohaemorrhagic Escherichia coli are potent protein synthesis inhibitors. Shiga toxins have also been shown to induce apoptosis in epithelial, endothelial and monocytic cells. The precise relationship between protein synthesis inhibition and induction of apoptosis is not known. We show that stimulation of the myelogenous leukaemia cell line THP-1 with purified Stx1 induced the endoplasmic reticulum (ER) stress response. Stx1 treatment increased activation of the ER stress sensors IRE1, PERK and ATF6. Toxin treatment increased expression of the transcriptional regulator CHOP and the death domain-containing receptor DR5 at mRNA and protein levels. Following Stx1 intoxication, levels of the survival factor Bcl-2 decreased, while secretion of the death-inducing ligand TRAIL increased. Stx1 enzymatic activity was required for optimal activation of PERK and ATF6, but not IRE1. ER stress elicited by Stx1 increased the release of Ca 2+ from ER stores and the activation of the protease calpain. Inhibition of calpain activity led to reductions in Stx1-induced cleavage of procaspase-8 and apoptosis. Collectively, these data suggest that Shiga toxins trigger monocytic cell apoptosis through the ER stress response, the increased expression of DR5 and TRAIL, and activation of caspase-8 via a calpaindependent mechanism.
Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.
Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the regulators of this process remain poorly defined. Herein, we show that the orphan nuclear receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3, proteins that are both recruited to mitochondria. Overexpression of SHP competitively inhibits binding of NLRP3 to apoptosis-associated speck-like protein containing a CARD (ASC). SHP deficiency results in increased secretion of proinflammatory cytokines IL-1β and IL-18, and excessive pathologic responses typically observed in mouse models of kidney tubular necrosis and peritoneal gout. Notably, the loss of SHP results in accumulation of damaged mitochondria and a sustained interaction between NLRP3 and ASC in the endoplasmic reticulum. These data are suggestive of a role for SHP in controlling NLRP3 inflammasome activation through a mechanism involving interaction with NLRP3 and maintenance of mitochondrial homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.