Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.
The broadcast ephemeris and IGS ultra-rapid predicted (IGU-P) products are primarily available for use in real-time GPS applications. The IGU orbit precision has been remarkably improved since late 2007, but its clock products have not shown acceptably high-quality prediction performance. One reason for this fact is that satellite atomic clocks in space can be easily influenced by various factors such as temperature and environment and this leads to complicated aspects like periodic variations, which are not sufficiently described by conventional models. A more reliable prediction model is thus proposed in this paper in order to be utilized particularly in describing the periodic variation behaviour satisfactorily. The proposed prediction model for satellite clocks adds cyclic terms to overcome the periodic effects and adopts delay coordinate embedding, which offers the possibility of accessing linear or nonlinear coupling characteristics like satellite behaviour. The simulation results have shown that the proposed prediction model outperforms the IGU-P solutions at least on a daily basis.
A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs) are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.