Disruption of endothelial barrier is a critical pathophysiological factor in inflammation. Thrombin exerts a variety of cellular effects including inflammation and apoptosis through activation of the protease activated receptors (PARs). The activation of PAR-1 by thrombin is known to have a bimodal effect in endothelial cell permeability with a low concentration (pM levels) eliciting a barrier protective and a high concentration (nM levels) eliciting a barrier disruptive response. It is not known whether this PAR-1-dependent activity of thrombin is a unique phenomenon specific for the in vitro assay or it is part of a general anti-inflammatory effect of low concentrations of thrombin that may have a physiological relevance. Here, we report that low concentrations of thrombin or of PAR-1 agonist peptide induced significant anti-inflammatory activities. However, relatively high concentration of thrombin or of PAR-1 agonist peptide showed pro-inflammatory activities. By using function-blocking anti-PAR-1 antibodies and PI3 kinase inhibitor, we show that the direct antiinflammatory effects of low concentrations of thrombin are dependent on the activation of PAR-1 and PI3 kinase. These results suggest a role for cross communication between PAR-1 activation and PI3 kinase pathway in mediating the cytoprotective effects of low concentrations of thrombin in the cytokine-stimulated endothelial cells.
Background/Aims: Wound healing is a complex regeneration process involving the degradation and reassembly of connective tissues and skin layers. Previous studies have shown that pH plays a significant role in both the direct and indirect regulation of cellular processes in the wound, which, in turn, affect the wound healing process. However, the effects of pH on the collagen breakdown component of wound healing have yet to be investigated. Therefore, we investigated the induction of accelerated collagen breakdown by pH imbalance in the skin. Methods: Na+/H+ exchanger and metalloproteinase (MMP)-1 were analyzed spectrophotometrically, and the expression of collagen type-I-alpha-1 (COL1A1) and mitogen-activated protein kinase (MAPK) was measured by Western blotting. Results: Accelerated collagen breakdown induced by extracellular basic pH via the overproduction of reactive oxygen species (ROS) and MAPK signaling was examined in skin fibroblasts and in a three-dimensional human skin equivalent system. Basic pH (>7.50) upregulated MMP-1 and downregulated COL1A1 levels via ROS generation and MAPK signaling pathways. Acidic pH (<6.04) slightly upregulated MMP-1 and slightly downregulated COL1A1 levels via ROS generation and the p38 signaling pathway. Conclusion: Our results indicate that skin pH is an important effector of collagen formation in wound healing. This finding will aid in the development of new pH-targeted therapeutic strategies.
The 50% ethanol extracts from Resina Pini of Pinus sp. (Pinaceae) showed more potent inhibitory activity against testosterone 5α-reductase prepared from rat prostate than those from several medicinal plants used for the treatment of androgen-dependent diseases such as benign prostatic hyperplasia. The fraction responsible for this activity was purified, and the active constituent was isolated and identified as abietic acid, a diterpene resin acid, which exhibited potent testosterone 5α-reductase inhibitory activity. Methyl abietate was substantially inactive against testosterone 5α-reductase, whereas other diterpene resin acids, pimaric acid and neoabietic acid, were as active as abietic acid against testosterone 5α-reductase, indicating that the negatively charged anionic carboxyl group on the molecule is an important structural moiety for the inhibitory activity. These findings suggest that a nonsteroidal anionic diterpene compound of natural origin may have the potential to act as a transition state analogue inhibitor of testosterone 5α-reductase in the treatment of androgendependent diseases.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with the hallmark characteristics of pruritus, psychological stress, and sleep disturbance, all possibly associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD). However, the etiology of the possible association between AD and ADHD is still not well understood. 2,4-dinitrochlorobenzene or corticosterone was used to evaluate the atopic symptom and its psychologic stress in the atopic mice model. Melatonin, corticotropin-releasing hormone, corticotropin-releasing hormone receptor, urocortin, proopiomelanocortin, adrenocorticotropic hormone, corticosterone, cAMP, cAMP response element-binding protein, dopamine and noradrenaline were analyzed spectrophotometrically, and the expression of dopamine beta-hydroxylase and tyrosine hydroxylase were measured by Western blotting or immunohistochemistry. AD-related psychological stress caused an increase in the levels of dopamine beta-hydroxylase and tyrosine hydroxylase, degradation of melatonin, hyper-activity of the hypothalamic-pituitary-adrenal axis, and dysregulation of dopamine and noradrenaline levels (ADHD phenomena) in the locus coeruleus, prefrontal cortex, and striatum of the AD mouse brain. Notably, melatonin administration inhibited the development of ADHD phenomena and their-related response in the mouse model. This study demonstrated that AD-related psychological stress increased catecholamine dysfunction and accelerated the development of psychiatric comorbidities, such as ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.