With the rapid development of the Internet of Things (IoT), the number of sensors utilized for the IoT is expected to exceed 200 billion by 2025. Thus, sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. The TENG harvests electrical energy from wasted mechanical energy in the ambient environment. Three types of operational modes based on contact-separation, sliding, and freestanding are reviewed for two different configurations with a double-electrode and a single-electrode structure in the TENGs. Various charge transfer mechanisms to explain the operational principles of TENGs during triboelectrification are also reviewed for electron, ion, and material transfers. Thereafter, diverse methodologies to enhance the output power considering the energy harvesting efficiency and energy transferring efficiency are surveyed. Moreover, approaches involving not only energy harvesting by a TENG but also energy storage by a charge storage device are also reviewed. Finally, a variety of applications with TENGs are introduced. This review can help to advance TENGs for use in self-powered sensors, energy harvesters, and other systems. It can also contribute to assisting with more comprehensive and rational designs of TENGs for various applications.
Resistance random access memory (RRAM) composed of stacked aluminum (Al)/InGaZnO(IGZO)/Al is investigated with different gallium concentrations. The stoichiometric ratio (x) of gallium in the InGaxZnO is varied from 0 to 4 for intentional control of the concentration of the oxygen vacancies (VO), which influences the electrical characteristics of the RRAM. No Ga in the IGZO (x = 0) significantly increases the value of VO and leads to a breakdown of the IGZO. In contrast, a high Ga concentration (x = 4) suppresses the generation of VO; hence, resistive switching is disabled. The optimal value of x is 2. Accordingly, enduring RRAM characteristics are achieved.
A highly sensitive and selective electrochemical sensor of dopamine (DA) has been developed by employing carboxylated carbonaceous spheres to modify glassy carbon electrodes (GCEs). Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize as-prepared carbonaceous spheres. The results show that the diameter of carboxylated carbonaceous spheres is uniformly 500 nm and that their surfaces mainly expose carboxyl groups with negative charges. Electrochemical measurements demonstrate that carboxylated carbonaceous spheres greatly improve the accumulation of positively charged dopamine, leading to good sensing performance on a modified GCE. Through applying the differential pulse voltammetric approach, linear calibration curves were obtained in a range of about 0.1 to 40 μM with a detection limit down to 30 nM. Furthermore, depending on the charge-based discrimination, the modified electrode displays good selective detection of DA and reliable anti-interference to UA and glucose besides a weak and negligible response to AA. Therefore, the carboxylated carbonaceous sphere introduced here is a good candidate to develop electrochemical sensors for the sensitive and selective detection of DA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.