Investigators using anti-EpoR antibodies for immunoblotting and immunostaining have reported erythropoietin receptor (EpoR) expression in nonhematopoietic tissues including human tumors. However, these antibodies detected proteins of 66 to 78 kDa, significantly larger than the predicted molecular weight of EpoR (56-57 kDa). We investigated the specificity of these antibodies and showed that they all detected non-EpoR proteins. C-20 detected 3 proteins in tumor cell lines (35, 66, and 100 kDa). Sequences obtained from preparative gels had similarity to the C-20-immunizing peptide. The 66-kDa protein was a heat shock protein (HSP70) to which antibody binding was abrogated in peptide competition experiments. Antibody M-20 readily identified a 59-kDa EpoR protein. However, neither M-20 nor C-20 was suitable for detection of EpoR using immunohistochemical methods. We concluded that these antibodies have limited utility for detecting EpoR. Thus, reports of EpoR expression in tumor cells using these antibodies should be viewed with caution. (Blood.
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level. Research on miRNAs has highlighted their importance in neural development, but the specific functions of neurally enriched miRNAs remain poorly understood. We report here the expression profile of miRNAs during neuronal differentiation in the human neuroblastoma cell line SH-SY5Y. Six miRNAs were significantly upregulated during differentiation induced by all-trans-retinoic acid and brain-derived neurotrophic factor. We demonstrated that the ectopic expression of either miR-124a or miR-125b increases the percentage of differentiated SH-SY5Y cells with neurite outgrowth. Subsequently, we focused our functional analysis on miR-125b and demonstrated the important role of this miRNA in both the spontaneous and induced differentiations of SH-SH5Y cells. miR-125b is also upregulated during the differentiation of human neural progenitor ReNcell VM cells, and miR-125b ectopic expression significantly promotes the neurite outgrowth of these cells. To identify the targets of miR-125b regulation, we profiled the global changes in gene expression following miR-125b ectopic expression in SH-SY5Y cells. miR-125b represses 164 genes that contain the seed match sequence of the miRNA and/or that are predicted to be direct targets of miR-125b by conventional methods. Pathway analysis suggests that a subset of miR-125b-repressed targets antagonizes neuronal genes in several neurogenic pathways, thereby mediating the positive effect of miR125b on neuronal differentiation. We have further validated the binding of miR-125b to the miRNA response elements of 10 selected mRNA targets. Together, we report here for the first time the important role of miR-125b in human neuronal differentiation.
The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.