Abstract. The aims of this study were to determine the groundwater quality index (GQI) using an averaged neural network and evaluate its field applicability with two-dimensional (2D) spatial analysis. The GQI was computed using 29 water quality parameters obtained at 3,552 portable groundwater wells used as drinking water sources. The GQI was divided into the following three grades: ‘worrisome’, <0.89 (20.1 % of the wells); ‘good’, 0.89–0.94 (62.8 %); and ‘very good’, >0.94 (17.1 %). Based on the random forest, the most important water quality parameters were general bacteria, turbidity and nitrate. The 2D spatial analysis confirmed notable differences in the GQI grades among regions. The 10-year long-term groundwater quality monitoring in the ‘worrisome’ grade showed the nitrate and chloride concentrations have continuously increased. These results indicate that the coupling of the GQI with 2D spatial analysis is a promising approach that can be applied in groundwater management and vulnerability assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.