The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.
The factors which give rise to the normal relationship between the great arteries and their respective ventricles are unknown. The developmental anatomy of this region was studied by using frontal, sagittal, or transverse serial histologic sections of 17 normal human embryos of Carnegie stages 15-19 from the Carnegie Embryological Collection. Distances and angles between major anatomic landmarks were determined by using computer reconstructions of the serially sectioned embryos, three-dimensional analytic geometry, and Euclidean distance formulas. The findings show that between stages 15 and 19 there is a marked rotation of the axis of the semilunar valves: frontal 121 degrees counterclockwise, sagittal 196 degrees counterclockwise, and transverse 240 degrees clockwise. Simultaneously the great arteries lengthen at a faster rate than the rest of the heart; and there is also an increase in the caliber and wall thickness of the great arteries. These results suggest that the changing rate of growth between the great arteries and the heart is necessary to align the great arteries, the semilunar valves, and the muscular outflow tract septum appropriately with respect to the interventricular septum. Reductions in the rate of growth of the great arteries relative to the heart could, by causing changes in the rotation of great arteries and outflow tract septum, have a role in the pathogenesis of cardiovascular malformations such as tetralogy of Fallot and transposition of the great arteries.
The development of the lung in 25 human embryos and early fetuses up to 140 mm crown-rump length was studied by examination of serial histologic sections, morphometry, and selected reconstructions. The proportion of pulmonary tissue consisting of tracheobronchial tree increases during this period. Bronchial cross-sectional diameter, length of the most distal bronchial branches, and thickness of the distal mesenchyme decline during development. The results are consistent with the concept that the dichotomous branching of the growing tracheobronchial tree occurs because of resistance to forward growth f the bronchial branch by compresses mesenchyme, pleura, or adjacent structures. Division and further growth of the bronchus takes place in areas of lower resistance. This process produces a "filling in" of space available for lung development and brings the epithelial and mesenchymal elements into their definitive relationships.
A male newborn infant, studied at autopsy, showed continuous splenogonadal fusion and severe peromelia associated with an unusual, possibly unique, cardiac malformation complex. The cardiac lesions included multiple right ventricular diverticula, tricuspid atresia, mitral to semilunar valve discontinuity, and absent muscular outflow tract septum. Tabulation of the time of appearance of relevant anatomic features in 351 normal human embryos of Carnegie stages 9 through 23 showed that the teratogenic influence in the present case probably occurred by stages 16-17. The nature and distribution of lesions observed suggest that proliferating undifferentiated mesenchyme was the target of the unknown injury.
Severe cardiac malformations may involve the atrioventricular valve region, but the sequence of embryonic development of this important area has been little studied. In particular, the basis of atrioventricular muscular discontinuity, except at the conduction system, has remained unexplained. To examine this question, serial histologic sections of human embryos from the Carnegie Embryological Collection and from the Hopkins Pathology Collection were studied and six embryos were reconstructed. The atrioventricular sulcus can be identified in Carnegie stage 10 as an indentation or crease on the right side separating the heart tube from the umbilical vein. By stage 12 the sulcus has deepened and rotated anteriorly as the atria appear and the heart tube elongates rapidly within the confining pericardial space. Selective accumulation of cardiac jelly on the endocardial aspect of the constriction of the heart tube produced by the atrioventricular sulcus is pronounced by stage 14. By stage 16 the separation of the atrioventricular orifice into right and left components is well advanced, and by stage 18 the septation of the atria and ventricles is largely complete. The muscular connection between the atria and the ventricles becomes interrupted around most of the artioventricular sulcus, except for the His bundle, during the latter part of the embryonic period. The topography of the original sulcus assumes a catenoidal or saddle-shaped configuration, i.e., convex in one plane and concave in the perpendicular plane. The tension and pressure relationships in such a structure would favor cardiac jelly accumulation and the eventual disintegration of lines of myocyte connections passing across the groove. The preservation of the His bundle connection is explained by the failure of the sulcus to completely encircle the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.