The environment has gained significant importance in recent years, and companies involved in several technology fields are moving in the direction of eco-friendly solutions. One of the most discussed topics in the automotive field is lithium-ion battery packs for electric vehicles and their battery thermal management systems (BTMSs). This work aims to show the most used lithium-ion battery pack cooling methods and technologies with best working temperature ranges together with the best performances. Different cooling methods are presented and discussed, with a focus on the comparison between air-cooling systems and liquid-cooling systems. In this context, a BTMS for cylindrical cells is presented, where the cells are arranged in staggered lines embedded in a solid structure and cooled through forced convection within channels. The thermal behavior of this BTMS is simulated by employing a computational fluid dynamics (CFD) approach. The effect of the geometry of the BTMS on the cell temperature distribution is obtained. It is shown that the use of materials with additives for the solid structure enhances the performance of the system, giving lower temperatures to the cells. The system is tested with air-cooling and water-cooling, showing that the best performances are obtained with water-cooling in terms of cell packing density and lowest cell temperatures.
Saving energy is a fundamental topic considering the growing energy requirements with respect to energy availability. Many studies have been devoted to this question, and life cycle assessment (LCA) is increasingly acquiring importance in several fields as an effective way to evaluate the energy demand and the emissions associated with products’ life cycles. In this work, an LCA analysis of an existent lithium-ion battery pack (BP) unit is presented with the aim to increase awareness about its consumption and offering alternative production solutions that are less energy intensive. Exploiting the literature data about cradle-to-grave and cradle-to-gate investigations, and after establishing reasonable approximations, the main BP sub-elements were considered for this study, such as the plastic cells support, the Li-ion cells brick, the PCBs for a battery management system (BMS), the liquid-based battery thermal management system (BTMS) and the BP container. For each of these components, the impacts of the extraction, processing, assembly, and transportation of raw materials are estimated and the partial and total values of the energy demand (ED) and global warming potential (GWP) are determined. The final interpretation of the results allows one to understand the important role played by LCA evaluations and presents other possible ways of reducing the energy consumption and CO2 emissions.
In this work, a commercial paraffin PCM (RT35) characterized by a change range of the solid-liquid phase transition temperature Ts−l = 29–36 ∘C and the low thermal conductivity λSL = 0.2 W/m K is experimentally tested by submitting it to thermal charging/discharging cycles. The paraffin is contained in a case with a rectangular base and heated from the top due to electrical resistance. The aim of this research is to show the benefits that a 95% porous copper metal foam (pore density PD=20PPI) can bring to a PCM-based thermal storage system by simply loading it, due to the consequent increase in the effective thermal conductivity of the medium (λLOAD = 7.03 W/m K). The experimental results highlight the positive effects of the copper foam presence, such as the heat conduction improvement throughout the system, and a significant reduction in time for the complete melting of the PCM. In addition, the experimental data highlight that in the copper-foam-loaded PCM the maximum temperature reached during the heating process is lower than 20K with respect to the test with pure PCM, imposing the same heat flux on the top (P=3.5 W/m2).
The thermal performance of latent heat thermal energy storage (LHTES) systems considerably depends on thermal conductivity of adopted phase change materials (PCMs). To increase the low thermal conductivity of these materials, pure PCMs can be loaded with metal foams. In this study, the melting process of pure and metal-foam loaded phase change materials placed in a rectangular shape case is experimentally investigated by imposing a constant heat flux at the top. Two different paraffin waxes with melting point of about 35°C are tested. The results obtained with pure PCM are compared with those achieved from the use of PCM combined with two different porous metals: a 10 PPI aluminum foam with 96% porosity and a 20 PPI copper foam with 95% porosity. The results demonstrate how metal foams lead to a significant improvement of conduction heat transfer reducing significantly the melting time and the temperature difference between the heater and PCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.