Robotized laser beam welding of closed-square-butt joints is sensitive to how the focused laser beam is positioned in relation to the joint, and existing joint tracking systems tend to fail in detecting the joint when the gap and misalignment between the work pieces are close to zero. A camera-based system is presented based on a high dynamic range camera operating with LED illumination at a specific wavelength and a matching optical filter. An image processing algorithm based on the Hough transform extracts the joint position from the camera images, and the joint position is then estimated using a Kalman filter. The filter handles situations, when the joint is not detectable in the image, e.g., when tack welds cover the joint. Surface scratches, which can be misinterpreted as being the joint, are handled by a joint curve prediction model based on known information about the nominal path defined by the robot program. The performance of the proposed system has been evaluated off line with image data obtained during several welding experiments.
Laser beam welding offers high productivity and relatively low heat input and is one key enabler for efficient manufacturing of sandwich constructions. However, the process is sensitive to how the laser beam is positioned with regards to the joint, and even a small deviation of the laser beam from the correct joint position (beam offset) can cause severe defects in the produced part. With tee joints, the joint is not visible from top side, therefore traditional seam tracking methods are not applicable since they rely on visual information of the joint. Hence, there is a need for a monitoring system that can give early detection of beam offsets and stop the process to avoid defects and reduce scrap. In this paper, a monitoring system using a spectrometer is suggested and the aim is to find correlations between the spectral emissions from the process and beam offsets. The spectrometer produces high dimensional data and it is not obvious how this is related to the beam offsets. A machine learning approach is therefore suggested to find these correlations. A multi-layer perceptron neural network (MLPNN), support vector machine (SVM), learning vector quantization (LVQ), logistic regression (LR), decision tree (DT) and random forest (RF) were evaluated as classifiers. Feature selection by using random forest and non-dominated sorting genetic algorithm II (NSGAII) was applied before feeding the data to the classifiers and the obtained results of the classifiers are compared subsequently. After testing different offsets, an accuracy of 94% was achieved for real-time detection of the laser beam deviations greater than 0.9 mm from the joint center-line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.