We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p-values as small as 5.9×10 −9 for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p-value is 2.3 × 10 −7 . We therefore reject the hypothesis that local realism governs our experiment.But if [a hidden variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local. This is what the theorem says. -John Stewart Bell [1] Quantum mechanics at its heart is a statistical theory. It cannot with certainty predict the outcome of all single events, but instead it predicts probabilities of outcomes. This probabilistic nature of quantum theory is at odds with the determinism inherent in Newtonian physics and relativity, where outcomes can be exactly predicted given sufficient knowledge of a system. Einstein and others felt that quantum mechanics was incomplete. Perhaps quantum systems are controlled by variables, possibly hidden from us [2], that determine the outcomes of measurements. If we had direct access to these hidden variables, then the outcomes of all measurements performed on quantum systems could be predicted with certainty. De Broglie's 1927 pilot-wave theory was a first attempt at formulating a hidden variable theory of quantum physics [3]; it was completed in 1952 by David Bohm [4,5]. While the pilot-wave theory can reproduce all of the predictions of quantum mechanics, it has the curious feature that hidden variables in one location can instantly change values because of events happening in distant locations. This seemingly violates the locality principle from relativity, which says that objects cannot signal one another faster than the speed of light. In 1935 the nonlocal feature of quantum systems was popularized by Einstein, Podolsky, and Rosen [6], and is something Einstein later referred to as "spooky actions at a distance" [7]. But in 1964 John Bell showed that it is impossible to construct a hidden variable theory that obeys locality and simultaneously reproduces all of the predictions of quantum mechanics [8]. Bell's theorem fundamentally changed our understanding of quantum theory and today stands as a cornerstone of modern quantum information science.Bell's theorem does not prove the validity of quantum mechanics, but it does allow us to test the hypothesis that nature is governed by local realism. The principle of realism says that any syst...
We demonstrate a bandpass amplifier which can be constructed from common electronic components and has the surprising property that the group delay is negative in most spectral regions. A pulse propagating through a chain of such amplifiers is advanced by several milliseconds: the output waveform precedes the input waveform. Although striking, this behavior is not in conflict with causality, as demonstrated by experiments with pulses which start or end abruptly.
We apply the techniques of quantum process tomography to characterize errors and decoherence in a prototypical two-photon operation, a singlet-state filter. The quantum process tomography results indicate a large asymmetry in the process and also the required operation to correct for this asymmetry. We quantify residual errors and decoherence of the filtering operation after this modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.