Effective thermal management is critical for the operation of many modern technologies, such as electronic circuits, smart clothing, and building environment control systems. By leveraging the static infrared-reflecting design of the space blanket and drawing inspiration from the dynamic color-changing ability of squid skin, we have developed a composite material with tunable thermoregulatory properties. Our material demonstrates an on/off switching ratio of ~25 for the transmittance, regulates a heat flux of ~36 W/m
2
with an estimated mechanical power input of ~3 W/m
2
, and features a dynamic environmental setpoint temperature window of ~8 °C. Moreover, the composite can manage one fourth of the metabolic heat flux expected for a sedentary individual and can also modulate localized changes in a wearer’s body temperature by nearly 10-fold. Due to such functionality and associated figures of merit, our material may substantially reduce building energy consumption upon widespread deployment and adoption.
Hydrogels with four different plant-based microcrystalline cellulose concentrations were prepared using the self-assembly technique. The interaction parameter between cellulose and water was determined by the classical Flory-Huggins theory, and was found to be around 0.44 with weak concentration dependence. The crosslinking density in these hydrogels was measured by both the Mooney-Rivlin equation and the Flory-Rehner theory. Reasonable consistency was found between the two methods albeit results from the Flory-Rehner theory were slightly higher due to the contribution from the physical crosslinks. The crosslinking density values for all four hydrogels determined from both methods were found to range from 19 to 56 mol/m 3 .
ABSTRACT.Purpose: This study was performed to evaluate the potential of a collagen-based membrane, collagen vitrigel (CV), for reconstructing corneal epithelium in the stromal wound and limbal stem cell deficiency (LSCD) models. Methods: Three groups of rabbits were used in the stromal wound model: CV affixed using fibrin glue (CV + FG group, n = 9), fibrin glue only (FG group, n = 3) and an untreated control group (n = 3). In the LSCD model, one group received CV containing human limbal epithelial cells (CV + hLEC group, n = 2) and the other was an untreated control (n = 1). Gross observation, including fluorescent staining, pathological examination, immunohistochemistry and electron microscopy, was used to evaluate the effect of CV on the corneal epithelium. Results: In the stromal wound model, fluorescent staining showed that epithelial reconstruction occurred as rapidly in the CV + FG group as it did in the control group. The pathological examination proved that the CV supported a healthy corneal epithelium in the CV + FG group, whereas FG led to hypertrophy and inappropriate differentiation of corneal epithelium in the FG group. In the LSCD model, the corneas in the CV + hLEC group showed sustained tissue transparency with good epithelialization, low inflammatory response and reduced neovascularization. However, the control cornea was translucent and showed high amounts of inflammation and neovascularization. Conclusion: We have demonstrated that CV supports corneal epithelial differentiation and prevents epithelial hypertrophy, in addition to serving as a scaffold for hLEC transplantation, without complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.