The ferruginous rupestrian grasslands (FRG) in the Iron Quadrangle (IQ) are ecosystems characterized by rocky soils with reduced availability of water and nutrients, but high levels of metals. In order to comprehend the interference of microorganisms on the adaptive process of endemic plant Mimosa calodendrum (Fabaceae), bacteria associated with its roots and rhizosphere were isolated. Fourteen isolates were obtained and subsequently grown in the presence of different concentrations of arsenic (As) species. The isolate Mc250, an Alcaligenes faecalis strain, resisted to 10 mM of As (III) and 800 mM of As (V). In the presence of this strain, atomic spectrometer detected a reduction of 55% for As (III) and 72% for As (V) respectively in 10 mM and 500 mM solution. Scanning electron microscopy of this isolate demonstrated morphological modification and EDX spectroscopy revealed the presence of both As species adsorbed on the membrane, justifying the removal observed in the in vitro assays. To validate this potential removal of As in vivo, tomato plants were used as grown model in the presence and absence of A. faecalis in soil previously contaminated with 5 mM of As (III). After 14 days, plants from contaminated soil had their growth improved when compared to untreated control plants. All these results suggest for the first time that plant-associated bacteria from FRG-IQ present potential for soil rhizoremediation and may benefit the adaptive processes of plants in extreme environments including application in recovering degraded areas.
Extensive mineral extractivism in the Brazilian Iron Quadrangle (IQ) region has destroyed large areas of land, decimating plant species, and their associated microbiota. Very little is known about the microbiota of the region; hence, cultivable bacteria associated with plants of its soils were investigated for their biotechnological potential. Samples were collected from nine plant species and six soils, and 65 cultivable bacterial isolates were obtained. These represent predominantly gram-positive bacilli (70%) capable of producing amylases (55%), proteases (63%), cellulases (47%), indole acetic acid (IAA) (46%), siderophores (26%), and to solubilize phosphate (9%). In addition, 65% of these were resistant to ampicillin, 100% were sensitive to tetracycline, and 97% were tolerant to high arsenic concentrations. Three isolates were studied further: the isolate FOB3 (Rosenbergiella sp.) produced high concentrations of IAA in vitro in the absence of tryptophan – shown by the significant improvement in plant germination and growth rate where the isolate was present. For isolates C25 (Acinetobacter sp.) and FG3 (Serratia sp.), plasmids were purified and inserted into Escherichia coli cells where they modified the physiological profile of the transformed strains. The E. coli::pFG3B strain showed the highest capacity for biofilm production, as well as an increase in the replication rate, arsenic tolerance and catalase activity. Moreover, this strain increased DNA integrity in the presence of arsenic, compared to the wild-type strain. These results help to explain the importance of bacteria in maintaining plant survival in ferruginous, rocky soils, acting as plant growth promoters, and to highlight the biotechnological potential of these bacteria.IMPORTANCE The Iron Quadrangle region is responsible for ∼60% of all Brazilian iron production and, at the same time, is responsible for housing a wide diversity of landscapes, and consequently, a series of endemic plant species and dozens of rare species – all of which have been poorly studied. Studies exploring the microbiota associated with these plant species are limited and in the face of the continuous pressure of extractive action, some species along with their microbiota are being decimated. To understand the potential of this microbiota, we discovered that cultivable bacterial isolates obtained from plants in the ferruginous rocky soil of the Iron Quadrangle region have diverse biotechnological potential, revealing a genetic ancestry still unknown.
Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.
The Iron Quadrangle (IQ) is one of the main iron ore producing regions of the world. The exploitation of its reserves jeopardizes the high biological endemism associated with this region. This work aimed to understand the diversity and bacterial potential associated with IQ caves. Floor and ceiling samples of seven ferruginous caves and one quartzite cave were collected, and their microbial relative abundance and diversity were established by 16S rRNA gene amplicon sequencing data. The results showed that ferruginous caves present higher microbial abundance and greater microbial diversity compared to the quartzite cave. Many species belonging to genera found in these caves, such as Pseudonocardia and Streptacidiphilus, are known to produce biomolecules of biotechnological interest as macrolides and polyketides. Moreover, comparative analysis of microbial diversity and metabolic potential in a biofilm in pendant microfeature revealed that the microbiota associated with this structure is more similar to the floor rather than ceiling samples, with the presence of genera that may participate in the genesis of these cavities, for instance, Ferrovum, Geobacter, and Sideroxydans. These results provide the first glimpse of the microbial life in these environments and emphasize the need of conservation programs for these areas, which are under intense anthropogenic exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.