(–)‐Epigallocatechin gallate (EGCG), the main constituent of green tea, and green tea extract show growth inhibition of various cancer cell lines, such as lung, mammary, and stomach. We studied how tea polyphenols induce growth inhibition of cancer cells. Since green tea extract contains various tea polyphenols, such as EGCG, (–)‐epigallocatechin (EGC), (–)‐epicatechin gallate (ECG), and (–)‐epicatechin (EC), the inhibitory potential of each tea polyphenol on the growth of a human lung cancer cell line, PC‐9 cells, was first examined. EGC and ECG inhibited the growth of PC‐9 cells as potently as did EGCG, but EC did not show significant growth inhibition. The mechanism of growth inhibition by EGCG was studied in relation to cell cycle regulation. Flow cytometric analysis revealed that treatment with 50 μM and 100 μM EGCG increased the percentages of cells in the G2‐M phase from 13.8% to 15.6% and 24.1%, respectively. The DNA histogram after treatment with 100 μM EGCG was similar to that after treatment with genistein, suggesting that EGCG induces G2‐M arrest in PC‐9 cells. Moreover, we found by microautoradiography that [3H]EGCG was incorporated into the cytosol, as well as the nuclei. These results provide new insights into the mechanisms of action of EGCG and green tea extract as cancer‐preventive agents in humans.
Summary p73 gene, a new p53 homologue, has been identified: it supposedly acts as tumour suppressor gene in neuroblastoma. To clarify whether p73 might be involved in lung carcinogenesis, we examined p73 expression in resected lung cancer and paired normal lung in 60 cases using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). We also examined p73 gene status in three representative cases using Southern blot, and p53 gene alteration in 49 cases using PCR-single-strand conformation polymorphism (PCR-SSCP) and direct sequence. In 87% of the cases (52/60) p73 expression in tumour was more than twice as high as that in paired normal lung tissues, and the difference between p73 expression in tumour and normal lung tissue was significant (P < 0.0001). However, Southern blot analysis revealed that none of the cases showed p73 gene amplification. Compared with clinicopathological characteristics, p73 expression correlates significantly with histological differences and age of patient, independently (P < 0.05). Concerning p53 gene status, 43% (21/49) showed p53 gene alteration, but there was no correlation between p73 overexpression and p53 gene alteration. Our results suggest that need for further functional analysis of the role of p73 in lung carcinogenesis.
Human lung adenocarcinomas are only relatively weakly associated with tobacco smoke, and other etiological factors need to be clarified. These may also vary with the histopathology. Because the p53 mutation status (frequency and spectrum) of a carcinoma can provide clues to causative agents, we subclassified 113 adenocarcinomas into five cell types: hobnail, columnar/cuboidal, mixed, polygonal, and goblet (54, 23, 18, 13, and 5, respectively) and investigated relationships with p53 mutations and smoking history. In the hobnail cell type, a low mutational frequency (37%) and a high proportion of transitions (65%), especially G:C to A:T transitions at CpG dinucleotides (45%) associated with spontaneous mutations, were found with a weak relation to tobacco smoke. In contrast, a high mutation frequency (70%) with a higher proportion of transversions (50%), especially G:C to T:A (44%) on the nontranscribed DNA strand, caused by exogenous carcinogenic agents like tobacco smoke, were observed for the columnar cell type, as with squamous cell carcinomas. These results indicate that two major subtypes of lung adenocarcinoma exist, one probably caused by tobacco smoke, and the other possibly due to spontaneous mutations. For the prevention of lung adenocarcinomas, in addition to stopping tobacco smoking, the elucidation of endogenous mechanisms is important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.