This work presents a systematic study of the ratio between the integrated intensities of the disorder-induced D and G Raman bands (ID∕IG) in nanographite samples with different crystallite sizes (La) and using different excitation laser energies. The crystallite size La of the nanographite samples was obtained both by x-ray diffraction using synchrotron radiation and directly from scanning tunneling microscopy images. A general equation for the determination of La using any laser energy in the visible range is obtained. Moreover, it is shown that ID∕IG is inversely proportional to the fourth power of the laser energy used in the experiment.
Graphene is a two-dimensional network in which sp2-hybridized carbon atoms are arranged in two different triangular sub-lattices (A and B). By incorporating nitrogen atoms into graphene, its physico-chemical properties could be significantly altered depending on the doping configuration within the sub-lattices. Here, we describe the synthesis of large-area, highly-crystalline monolayer N-doped graphene (NG) sheets via atmospheric-pressure chemical vapor deposition, yielding a unique N-doping site composed of two quasi-adjacent substitutional nitrogen atoms within the same graphene sub-lattice (N2AA). Scanning tunneling microscopy and spectroscopy (STM and STS) of NG revealed the presence of localized states in the conduction band induced by N2AA-doping, which was confirmed by ab initio calculations. Furthermore, we demonstrated for the first time that NG could be used to efficiently probe organic molecules via a highly improved graphene enhanced Raman scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.