With the increasing occurrence of forest fires in the mid-latitudes and the alpine region, fire risk assessments become important in these regions. Fuel assessments involve the collection of information on forest structure as, e.g., the stand height or the stand density. The potential of airborne laser scanning (ALS) to provide accurate forest structure information has been demonstrated in several studies. Yet, flight acquisitions at the state level are carried out in intervals of typically five to ten years in Central Europe, which often makes the information outdated. The Sentinel-1 (S-1) synthetic aperture radar mission provides freely accessible earth observation (EO) data with short revisit times of 6 days. Forest structure information derived from this data source could, therefore, be used to update the respective ALS descriptors. In our study, we investigated the potential of S-1 time series to derive stand height and fractional cover, which is a measure of the stand density, over a temperate deciduous forest in Austria. A random forest (RF) model was used for this task, which was trained using ALS-derived forest structure parameters from 2018. The comparison of the estimated mean stand height from S-1 time series with the ALS derived stand height shows a root mean square error (RMSE) of 4.76 m and a bias of 0.09 m on a 100 m cell size, while fractional cover can be retrieved with an RMSE of 0.08 and a bias of 0.0. However, the predictions reveal a tendency to underestimate stand height and fractional cover for high-growing stands and dense areas, respectively. The stratified selection of the training set, which we investigated in order to achieve a more homogeneous distribution of the metrics for training, mitigates the underestimation tendency to some degree, yet, cannot fully eliminate it. We subsequently applied the trained model to S-1 time series of 2017 and 2019, respectively. The computed difference between the predictions suggests that large decreases in the forest height structure in this two-year interval become apparent from our RF-model, while inter-annual forest growth cannot be measured. The spatial patterns of the predicted forest height, however, are similar for both years (Pearson’s R = 0.89). Therefore, we consider that S-1 time series in combination with machine learning techniques can be applied for the derivation of forest structure information in an operational way.
<p><strong>Abstract.</strong> Point clouds derived from airborne laser scanning (ALS) and from LiDAR sensors mounted on unmanned aerial vehicles (ULS) reveal differences caused by the different sensor systems and acquisition geometries. These differences in the system characteristics are reflected in forest structure metrics that are derived from the respective point clouds. In our study, we investigate the completeness of scene coverage between the two systems and address differences between structure metrics derived from ULS and ALS, namely in point height quantiles, fractional cover (<i>fc</i>), the vertical complexity index (<i>VCI</i>) and the number of canopy layers (<i>nLayers</i>). The metrics are evaluated for raster cell sizes of 1&ndash;10&thinsp;m in order to investigate the spatial scale on which the sensor systems provide comparable metrics. We found highest correspondences between ALS and ULS in the <i>VCI</i>- and the <i>nLayers</i>-metrics, while fc revealed large differences. For the height quantiles, the absolute differences were larger for the 10%- (<i>h</i>10) and the 50%- (<i>h</i>50) than for the 90%- (<i>h</i>90) height quantile. Furthermore, we found differences between ALS- and ULS-metrics to decrease for larger cell sizes, except for <i>fc</i>, for which the differences increased, and <i>h</i>50 and <i>h</i>90, respectively, for which the differences were relatively stable for all cell sizes.</p>
We propose a flexible framework for automated forest patch delineations that exploits a set of canopy structure features computed from airborne laser scanning (ALS) point clouds. The approach is based on an iterative subdivision of the point cloud using k-means clustering followed by an iterative merging step to tackle oversegmentation. The framework can be adapted for different applications by selecting relevant input features that best measure the intended homogeneity. In our study, the performance of the segmentation framework was tested for the delineation of forest patches with a homogeneous canopy height structure on the one hand and with similar water cycle conditions on the other. For the latter delineation, canopy components that impact interception and evapotranspiration were used, and the delineation was mainly driven by leaf area, tree functional type, and foliage density. The framework was further tested on two scenes covering a variety of forest conditions and topographies. We demonstrate that the delineated patches capture well the spatial distributions of relevant canopy features that are used for defining the homogeneity. The consistencies range from R 2 = 0 . 84 to R 2 = 0 . 86 and from R 2 = 0 . 80 to R 2 = 0 . 91 for the most relevant features in the delineation of patches with similar height structure and water cycle conditions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.