We investigate the formation of a Bose polaron when a single impurity in a Bose-Einstein condensate is quenched from a non-interacting to an attractively interacting state in the vicinity of a Feshbach resonance. We use a beyond-Fröhlich Hamiltonian to describe both sides of the resonance and a coherent-state variational ansatz to compute the time evolution of boson density profiles in position space. We find that on the repulsive side of the Feshbach resonance, the Bose polaron performs long-lived oscillations, which is surprising given that the two-body problem has only one bound state coupled to a continuum. They arise due to interference between multiply occupied bound states and therefore can be only found with many-body approaches such as the coherentstate ansatz. This is a distinguishing feature of the Bose polaron compared to the Fermi polaron where the bound state can be occupied only once. We derive an implicit equation for the frequency of these oscillations and show that it can be approximated by the energy of the two-body bound state. Finally, we consider an impurity introduced at non-zero velocity and find that, on the repulsive side, it is periodically slowed down or even arrested before speeding up again.
We investigate a Bose-Einstein condensate in strong interaction with a single impurity particle. While this situation has received considerable interest in recent years, the regime of strong coupling remained inaccessible to most approaches due to an instability in the Bogoliubov theory arising near the resonance. We present a nonlocal extension of the Gross-Pitaevskii theory that is free of such divergences and does not require the use of the Born approximation in any of the interaction potentials. We find a new dynamical transition regime between attractive and repulsive polarons, where an interaction quench results in a finite number of coherent oscillations in the density profiles of the medium and in the contact parameter before equilibrium is reached.
We investigate the behaviour of hard-core bosons in one-and two-dimensional flat band systems, the chequerboard and the kagomé lattice and one-dimensional analogues thereof. The one dimensional systems have an exact local reflection symmetry which allows for exact results. We show that above the critical density an additional particle forms a pair with one of the other bosons and that the pair is localised. In the two-dimensional systems exact results are not available but variational results indicate a similar physical behaviour.
We give a detailed account of a stationary impurity in an ideal Bose-Einstein condensate, which we call the ideal Bose polaron, at both zero and non-zero temperatures and arbitrary strength of the impurity-boson coupling. The time evolution is solved exactly and it is found that, surprisingly, many of the features that have been predicted for the real BEC are already present in this simpler setting and can be understood analytically therein. We obtain explicit formulae for the time evolution of the condensate wave function at T = 0 and of the one-particle density matrix at T > 0. For negative scattering length, the system is found to thermalize even though the dynamics are perfectly coherent. The time evolution and thermal values of the Tan contact are derived and compared to a recent experiment. We find that contrary to the Fermi polaron, the contact is not bounded at unitarity as long as a condensate exists. An explicit formula for the dynamical overlap at T = 0 allows us to compute the rf spectrum which can be understood in detail by relating it to the two-body problem of one boson and the impurity.
Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations of the medium. When there is short-range attraction between impurities and fermions, also the induced interaction between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths between two heavy impurities in an ideal Fermi gas at zero temperature. While the induced interaction between impurities is weakly attractive for weak impurity-medium interactions, we find that impurities strongly and attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the induced scattering length and even strong repulsion. These resonances occur whenever a threebody Efimov bound state appears at the continuum threshold. At energies above the continuum threshold, we find that the Efimov state in medium can turn into a quasi-bound state with a finite decay width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.