Gas bubbles are of major importance in most metallurgical processes. They promote chemical reactions, homogenize the melt, or float inclusions. Thus, their dynamics are of crucial interest for the optimization of metallurgical processes. In this work, the state of knowledge of bubble dynamics at the bubble scale in liquid metals is reviewed. Measurement methods, with emphasis on liquid metals, are presented, and difficulties and shortcomings are analyzed. The bubble formation mechanism at nozzles and purging plugs is discussed. The uncertainty regarding the prediction of the bubble size distribution in real processes is demonstrated using the example of the steel casting ladle. Finally, the state of knowledge on bubble deformation and interfacial forces is summarized and the scalability of existing correlations to liquid metals is critically discussed. It is shown that the dynamics of bubbles, especially in liquid metals, are far from understood. While the drag force can be predicted reasonably well, there are large uncertainties regarding the bubble size distribution, deformation, and lift force. In particular, the influence of contaminants, which cannot yet be quantified in real processes, complicates the discussion and the comparability of experimental measurements. Further open questions are discussed and possible solutions are proposed.
To account for increasing economic and ecological pressure, the steel industry is obligated to continuously optimize all processes. An important optimization approach is numerical modeling although its potential is limited by the accuracy of the mathematical models. In a previous work, a validation database was created and a validation score was derived from this data which allows a comprehensive qualitative accuracy assessment for those models. Here, this system is employed for a systematic optimization of the isothermal flow in the casting ladle. For that, different submodels, namely the turbulence models, subgrid turbulence models, bubble-induced turbulence and interfacial closure models as well as influencing factors, such as the grid resolution or the initial bubble size, are analyzed. It is shown that the large eddy turbulence model is more accurate than the Reynolds-average approach because it is able to reproduce the anisotropy of turbulence in the bubble region. In accordance with the literature, a grid dependency of the lift force is found which can be reduced using an averaged shear field as an additional variable. For the interfacial closure models, the combination of the Tomiyama drag model for fully contaminated systems and the Tomiyama lift correlation showed the best agreement with the experimental data. The results of the survey are summarized to a best-practice guideline with which the validation score can be increased from 38.7 with the Reynolds-average approach to 85.1 on a coarse grid respectively, and 87.8 on a fine grid. However, some upscaling problems of the numerical system from the water model to the real ladle are revealed. There is a need to find accurate yet efficient grid resolutions which make the large eddy turbulence model affordable with the current computational resources. Furthermore, alloying elements or non-metallic inclusions might alter the interfacial forces considerably. However, no studies on their effect have been published yet.
In ladle metallurgy, the flow of purge gas through injectors promotes an effective mixing of the melt concerning composition and energy. In this work, different types of gas injectors, positioned eccentrically at 66% of the ladle radius are investigated in terms of the bubble size distribution, the resultant flow field velocity, and turbulent kinetic energy. The experiments are carried out in a 1:3 scale water model of a 185 t ladle using Particle Image Velocimetry (PIV) and image processing. It is shown that a porous plug provides more intensive bulk convection and a higher degree of turbulence than the other tested injectors. The differences are explained by the generation of smaller bubbles, which transfer more momentum into the liquid. The differences between the injectors are small, though. Thus, it is concluded that in comparison with other process parameters, the type of injector plays a minor role in the efficiency of ladle metallurgy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.