Oering services to stabilize the electrical grid is nowadays one of the major tasks of fossil power plants and also of signicant economical relevance. In addition the study involves an investigation on the input signals (grid frequency) and a calculation of lifetime consumption for specic components to evaluate the eects.
The increasing share of fluctuating renewable energy sources leads to changing requirements for conventional power plants. The changing characteristics of the residual load requires the conventional fleet to operate with higher load gradients, lower minimum load at improved efficiency levels as well as faster start-ups and provision of ancillary services. Despite the requirements from the electricity market, the value of improving those flexibility parameters is hard to evaluate for power plant operators. In order to quantify the additional benefit that can be achieved by improving flexibility parameters on a certain power plant in a changing market environment, an adjustable load dispatch model has developed for that purpose. Using past electricity market data, the model is validated for typical coal and a typical gas fired power plants by reproducing their operational schedule. In the next step, the model is used to apply parameter changes to the power plants specifications and economic effects are demonstrated. General statements are derived on which flexibility parameter needs to be improved on each power plant type. Furthermore, specific economic evaluations are shown for the reference power plants in order to present the ability of the developed tool to support investment decisions for modernization projects of existing power plants.
Due to the increasing integration of renewable energy sources in the existing power grid the conventional power plants have to set their focus more on flexibility and grid stabilization than supplying the base load. Since this task was not foreseeable when designing the currently existing power plants, they will have to suffer completely different load scenarios than expected. Dynamic modelling of complete steam cycles is a promising way to study the power plant operation of various future scenarios. To adapt the model to real power plant behaviour, especially with a focus on control events, the implementation of effects due to steam blown into the gasside part of the boiler in order to detach soot from the heating surfaces (soot blowing) seem to bring great efforts concerning model validity. Furthermore special control optimizations can be done, for example on spray injection at soot blowing events. In this study temperature measurement data is used in combination with a highly detailed boiler model of a 550 MW hard coal fired power plant to build a mathematical model of soot blowing influence on the different heat exchangers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.