The isotopes 60 Fe and 26 Al originate from massive stars and their supernovae, reflecting ongoing nucleosynthesis in the Galaxy. We studied the gamma-ray emission from these isotopes at characteristic energies 1173, 1332, and 1809 keV with over 15 years of SPI data, finding a line flux in 60 Fe combined lines of (0.31 ± 0.06) × 10 −3 ph cm −2 s −1 and the 26 Al line flux of (16.8 ± 0.7) × 10 −4 ph cm −2 s −1 above the background and continuum emission for the whole sky. Based on the exponentialdisk grid maps, we characterise the emission extent of 26 Al to find scale parameters R 0 = 7.0 +1.5 −1.0 kpc and z 0 = 0.8 +0.3 −0.2 kpc, however the 60 Fe lines are too weak to spatially constrain the emission. Based on a point source model test across the Galactic plane, the 60 Fe emission would not be consistent with a single strong point source in the Galactic center or somewhere else, providing a hint for a diffuse nature. We carried out comparisons of emission morphology maps using different candidate-source tracers for both 26 Al and 60 Fe emissions, and suggests that the 60 Fe emission is more likely to be concentrated towards the Galactic plane. We determine the 60 Fe / 26 Al γ-ray flux ratio at (18.4 ± 4.2) % , when using a parameterized spatial morphology model. Across the range of plausible morphologies, it appears possible that 26 Al and 60 Fe are distributed differently in the Galaxy. Using the best fitting maps for each of the elements, we constrain flux ratios in the range 0.2-0.4. We discuss its implications for massive star models and their nucleosynthesis.
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aims. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods. We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results. Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
Context. The coded-mask spectrometer-telescope SPI on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTE-GRAL) records photons in the energy range between 20 and 8000 keV. A robust and versatile method to model the dominating instrumental background (BG) radiation is difficult to establish for such a telescope in the rapidly changing space environment. Aims. From long-term monitoring of SPI's Germanium detectors, we built up a spectral parameter data base (Diehl et al. 2018), which characterises the instrument response as well as the BG behaviour. We aim to build a self-consistent and broadly applicable BG model for typical science cases of INTEGRAL/SPI, based on this data base. Methods. The general analysis method for SPI relies on distinguishing between illumination patterns on the 19-element Germanium detector array from BG and sky in a maximum likelihood framework. We illustrate how the complete set of measurements, even including the exposures of the sources of interest, can be used to define a BG model. The observation strategy of INTEGRAL makes it possible to determine individual BG components, originating from continuum and γ-ray line emission. We apply our method to different science cases, including point-like, diffuse, continuum, and line emission, and evaluate the adequacy in each case. Results. From likelihood values and the number of fitted parameters, we determine how strong the impact of the unknown BG variability is. We find that the number of fitted parameters, i.e. how often the BG has to be re-normalised, depends on the emission type (diffuse with many observations over a large sky region, or point-like with concentrated exposure around one source), and the spectral energy range and bandwidth. A unique time scale, valid for all analysis issues, is not applicable for INTEGRAL/SPI, but must and can be inferred from the chosen data set. Conclusions. We conclude that our BG modelling method is usable in a large variety of INTEGRAL/SPI science cases, and provides nearly systematics-free and robust results.
Context. The diffuse gamma-ray emission of 26 Al at 1.8 MeV reflects ongoing nucleosynthesis in the Milky Way, and traces massivestar feedback in the interstellar medium due to its 1 Myr radioactive lifetime. Interstellar-medium morphology and dynamics are investigated in astrophysics through 3D hydrodynamic simulations in fine detail, as only few suitable astronomical probes are available. Aims. We compare a galactic-scale hydrodynamic simulation of the Galaxy's interstellar medium, including feedback and nucleosynthesis, with gamma-ray data on 26 Al emission in the Milky Way extracting constraints that are only weakly dependent on the particular realisation of the simulation or Galaxy structure. Methods. Due to constraints and biases in both the simulations and the gamma-ray observations, such comparisons are not straightforward. For a direct comparison, we perform maximum likelihood fits of simulated sky maps as well as observation-based maximum entropy maps to measurements with INTEGRAL/SPI. To study general morphological properties, we compare the scale heights of 26 Al emission produced by the simulation to INTEGRAL/SPI measurements.Results. The direct comparison shows that the simulation describes the observed inner Galaxy well, but differs significantly from the observed full-sky emission morphology. Comparing the scale height distribution, we see similarities for small scale height features and a mismatch at larger scale heights. We attribute this to the prominent foreground emission sites that are not captured by the simulation.
Context. Tracing unstable isotopes produced in supernova nucleosynthesis provides a direct diagnostic of supernova explosion physics. Theoretical models predict an extensive variety of scenarios, which can be constrained through observations of the abundant isotopes 56Ni and 44Ti. Direct evidence of the latter was previously found only in two core-collapse supernova events, and appears to be absent in thermonuclear supernovae. Aims. We aim to to constrain the supernova progenitor types of Cassiopeia A, SN 1987A, Vela Jr., G1.9+0.3, SN1572, and SN1604 through their 44Ti ejecta masses and explosion kinematics. Methods. We analyzed INTEGRAL/SPI observations of the candidate sources utilizing an empirically motivated high-precision background model. We analyzed the three dominant spectroscopically resolved de-excitation lines at 68, 78, and 1157 keV emitted in the decay chain of 44Ti→44Sc→44Ca. The fluxes allow the determination of the production yields of 44Ti. Remnant kinematics were obtained from the Doppler characteristics of the lines. Results. We find a significant signal for Cassiopeia A in all three lines with a combined significance of 5.4σ. The fluxes are (3.3 ± 0.9) × 10−5 ph cm−2 s−1, and (4.2 ± 1.0) × 10−5 ph cm−2 s−1 for the 44Ti and 44Sc decay, respectively. This corresponds to a mass of (2.4 ± 0.7) × 10−4 M⊙ and (3.1 ± 0.8) × 10−4 M⊙, respectively. We obtain higher fluxes for 44Ti with our analysis of Cassiopeia A than were obtained in previous analyses. We discuss potential differences. We interpret the line width from Doppler broadening as expansion velocity of (6400 ± 1900) km s−1. We do not find any significant signal for any other candidate sources. Conclusions. We obtain a high 44Ti ejecta mass for Cassiopeia A that is in disagreement with ejecta yields from symmetric 2D models. Upper limits for the other core-collapse supernovae are in agreement with model predictions and previous studies. The upper limits we find for the three thermonuclear supernovae (G1.9+0.3, SN1572 and SN1604) consistently exclude the double detonation and pure helium deflagration models as progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.