We have constructed a large format mosaic CCD camera for the Sloan Digital Sky Survey. The camera consists of two arrays, a photometric array which uses 30 2048 x 2048 SITe/Tektronix CCDs (24 micron pixels) with an effective imaging area of 720 square cm, and an astrometric array which uses 24 400 x 2048 CCDs with the same pixel size, which will allow us to tie bright astrometric standard stars to the objects imaged in the photometric camera. The instrument will be used to carry out photometry essentially simultaneously in five color bands spanning the range accessible to silicon detectors on the ground in the time-delay- and-integrate (TDI) scanning mode. The photometric detectors are arrayed in the focal plane in six columns of five chips each such that two scans cover a filled stripe 2.5 degrees wide. This paper presents engineering and technical details of the camera.Comment: 67 pages (inc 6 tables), plain TeX, 41 figures (gif), to appear in the Astronomical Journal, December 1998. The figures can be downloaded from http://astro.princeton.edu/~library/prep.html, preprint POPe-774, allfigs.zip, in postscrip
No abstract
The Space Telescope Imaging Spectrograph (STIS) instrument was installed on the Hubble Space Telescope (HST) during the second servicing mission, in 1997 February. Four bands cover the wavelength range of 115-1000 nm, with spectral resolving powers between 26 and 200,000. Camera modes are used for target acquisition and deep imaging. Correction for HST's spherical aberration and astigmatism is included. The 115-170 nm range is covered by a CsI MAMA (Multianode Microchannel Array) detector and the 165-310 nm range by a Cs 2 Te MAMA, each with a format of pixels, while the 305-555 and 550-1000 nm ranges are 2048 # 2048 covered by a single CCD with a format of pixels. The multiplexing advantage of using these two-1024 # 1024 dimensional detectors compared with the pixel detectors of the first-generation spectrographs is 1 or 2 1 # 512 orders of magnitude, depending on the mode used. The relationship between the scientific goals and the instrument specifications and design is discussed.
The Space Telescope Imaging Spectrograph (STIS) was successfully installed into the Hubble Space Telescope (HST) in 1997 February, during the second HST servicing mission, STS-82. STIS is a versatile spectrograph, covering the 115-1000 nm wavelength range in a variety of spectroscopic and imaging modes that take advantage of the angular resolution, unobstructed wavelength coverage, and dark sky offered by the HST. In the months since launch, a number of performance tests and calibrations have been carried out and are continuing. These tests demonstrate that the instrument is performing very well. We present here a synopsis of the results to date.
We present data for dark current of a back-illuminated CCD over the temperature range of 222 to 291 K. Using an Arrhenius law, we found that the analysis of the data leads to the relation between the prefactor and the apparent activation energy as described by the Meyer-Neldel rule. However, a more detailed analysis shows that the activation energy for the dark current changes in the temperature range investigated. This transition can be explained by the larger relative importance at high temperatures of the diffusion dark current and at low temperatures by the depletion dark current. The diffusion dark current, characterized by the band gap of silicon, is uniform for all pixels. At low temperatures, the depletion dark current, characterized by half the band gap, prevails, but it varies for different pixels. Dark current spikes are pronounced at low temperatures and can be explained by large concentrations of deep level impurities in those particular pixels. We show that fitting the data with the impurity concentration as the only variable can explain the dark current characteristics of all the pixels on the chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.