Male courtship is provoked by perception of a potential mate. In addition, the likelihood and intensity of courtship are influenced by recent mating experience, which affects sexual drive. Using Drosophila melanogaster, we found that the homolog of mammalian neuropeptide Y, neuropeptide F (NPF), and a cluster of male-specific NPF (NPFM) neurons, regulate courtship through affecting courtship drive. Disrupting NPF signaling produces sexually hyperactive males, which are resistant to sexual satiation, and whose courtship is triggered by sub-optimal stimuli. We found that NPFM neurons make synaptic connections with P1 neurons, which comprise the courtship decision center. Activation of P1 neurons elevates NPFM neuronal activity, which then act through NPF receptor neurons to suppress male courtship, and maintain the proper level of male courtship drive.
Environmental exposure pathophysiology related to smoking can yield metabolic changes that are difficult to describe in a biologically informative fashion with manual proprietary software. Nuclear magnetic resonance (NMR) spectroscopy detects compounds found in biofluids yielding a metabolic snapshot. We applied our semi-automated NMR pipeline for a secondary analysis of a smoking study (MTBLS374 from the MetaboLights repository) (n = 112). This involved quality control (in the form of data preprocessing), automated metabolite quantification, and analysis. With our approach we putatively identified 79 metabolites that were previously unreported in the dataset. Quantified metabolites were used for metabolic pathway enrichment analysis that replicated 1 enriched pathway with the original study as well as 3 previously unreported pathways. Our pipeline generated a new random forest (RF) classifier between smoking classes that revealed several combinations of compounds. This study broadens our metabolomic understanding of smoking exposure by 1) notably increasing the number of quantified metabolites with our analytic pipeline, 2) suggesting smoking exposure may lead to heterogenous metabolic responses according to random forest modeling, and 3) modeling how newly quantified individual metabolites can determine smoking status. Our approach can be applied to other NMR studies to characterize environmental risk factors, allowing for the discovery of new biomarkers of disease and exposure status.
Path dependence influences macroevolutionary predictability by constraining potential outcomes after stochastic evolutionary events. Although demonstrated in laboratory experiments, the basis of path dependence is difficult to demonstrate in natural systems because of a lack of independent replicates. Here we show two types of complex distributed visual systems each recently evolved twice within chiton mollusks, demonstrating rapid and path dependent evolution. The type of visual system a chiton lineage evolves is constrained by the number of openings for optic nerves in its shell plates: lineages with more openings evolve visual systems with thousands of eyespots, whereas those with fewer evolve visual systems with hundreds of shell eyes. These macroevolutionary outcomes shaped by path dependence are both deterministic and stochastic because possibilities are restricted yet not entirely predictable.
BackgroundCirculating small RNAs (smRNAs) originate from diverse tissues and organs. Previous studies investigating smRNAs as potential biomarkers for Parkinson’s disease (PD) have yielded inconsistent results. We investigated whether smRNA profiles from neuronally-enriched serum exosomes and microvesicles are altered in PD patients and discriminate PD subjects from controls.MethodsDemographic, clinical, and serum samples were obtained from 60 PD subjects and 40 age- and sex-matched controls. Exosomes and microvesicles were extracted and isolated using a validated neuronal membrane marker (CD171). Sequencing and bioinformatics analyses were used to identify differentially expressed smRNAs in PD and control samples. SmRNAs also were tested for association with clinical metrics. Logistic regression and random forest classification models evaluated the discriminative value of the smRNAs.ResultsIn serum CD171 enriched exosomes and microvesicles, a panel of 29 smRNAs was expressed differentially between PD and controls (false discovery rate (FDR) < 0.05). Among the smRNAs, 23 were upregulated and 6 were downregulated in PD patients. Pathway analysis revealed links to cellular proliferation regulation and signaling. Least absolute shrinkage and selection operator adjusted for the multicollinearity of these smRNAs and association tests to clinical parameters via linear regression did not yield significant results. Univariate logistic regression models showed that four smRNAs achieved an AUC ≥ 0.74 to discriminate PD subjects from controls. The random forest model had an AUC of 0.942 for the 29 smRNA panel.ConclusionCD171-enriched exosomes and microvesicles contain the differential expression of smRNAs between PD and controls. Future studies are warranted to follow up on the findings and understand the scientific and clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.