Test of homogeneity of covariances (or homoscedasticity) among several groups has many applications in statistical analysis. In the context of incomplete data analysis, tests of homoscedasticity among groups of cases with identical missing data patterns have been proposed to test whether data are missing completely at random (MCAR). These tests of MCAR require large sample sizes n and/or large group sample sizes ni, and they usually fail when applied to non-normal data. Hawkins (1981) proposed a test of multivariate normality and homoscedasticity that is an exact test for complete data when ni are small. This paper proposes a modification of this test for complete data to improve its performance, and extends its application to test of homoscedasticity and MCAR when data are multivariate normal and incomplete. Moreover, it is shown that the statistic used in the Hawkins test in conjunction with a nonparametric k-sample test can be used to obtain a nonparametric test of homoscedasticity that works well for both normal and non-normal data. It is explained how a combination of the proposed normal-theory Hawkins test and the nonparametric test can be employed to test for homoscedasticity, MCAR, and multivariate normality. Simulation studies show that the newly proposed tests generally outperform their existing competitors in terms of Type I error rejection rates. Also, a power study of the proposed tests indicates good power. The proposed methods use appropriate missing data imputations to impute missing data. Methods of multiple imputation are described and one of the methods is employed to confirm the result of our single imputation methods. Examples are provided where multiple imputation enables one to identify a group or groups whose covariance matrices differ from the majority of other groups.
Researchers are often faced with analyzing data sets that are not complete. To properly analyze such data sets requires the knowledge of the missing data mechanism. If data are missing completely at random (MCAR), then many missing data analysis techniques lead to valid inference. Thus, tests of MCAR are desirable. The package MissMech implements two tests developed by Jamshidian and Jalal (2010) for this purpose. These tests can be run using a function called TestMCARNormality. One of the tests is valid if data are normally distributed, and another test does not require any distributional assumptions for the data. In addition to testing MCAR, in some special cases, the function TestMCARNormality is also able to test whether data have a multivariate normal distribution. As a bonus, the functions in MissMech can also be used for the following additional tasks: (i) test of homoscedasticity for several groups when data are completely observed, (ii) perform the k-sample test of Anderson-Darling to determine whether k groups of univariate data come from the same distribution, (iii) impute incomplete data sets using two methods, one where normality is assumed and one where no specific distributional assumptions are made, (iv) obtain normal-theory maximum likelihood estimates for mean and covariance matrix when data are incomplete, along with their standard errors, and finally (v) perform the Neyman's test of uniformity. All of these features are explained in the paper, including examples.
The EM algorithm is a popular method for maximum likelihood estimation. Its simplicity in many applications and desirable convergence properties make it very attractive. Its sometimes slow convergence, however, has prompted researchers to propose methods to accelerate it. We review these methods, classifying them into three groups: pure, hybrid and EM-type accelerators. We propose a new pure and a new hybrid accelerator both based on quasi-Newton methods and numerically compare these and two other quasi-Newton accelerators. For this we use examples in each of three areas: Poisson mixtures, the estimation of covariance from incomplete data and multivariate normal mixtures. In these comparisons, the new hybrid accelerator was fastest on most of the examples and often dramatically so. In some cases it accelerated the EM algorithm by factors of over 100. The new pure accelerator is very simple to implement and competed well with the other accelerators. It accelerated the EM algorithm in some cases by factors of over 50. To obtain standard errors, we propose to approximate the inverse of the observed information matrix by using auxiliary output from the new hybrid accelerator. A numerical evaluation of these approximations indicates that they may be useful at least for exploratory purposes.
We consider maximum likelihood (ML) estimation of mean and covariance structure models when data are missing. Expectation maximization (EM), generalized expectation maximization (GEM), Fletcher-Powell, and Fisherscoring algorithms are described for parameter estimation. It is shown how the machinery within a software that handles the complete data problem can be utilized to implement each algorithm. A numerical differentiation method for obtaining the observed information matrix and the standard errors is given. This method too uses the complete data program machinery. The likelihood ratio test is discussed for testing hypotheses. Three examples are used to compare the cost of the four algorithms mentioned above, as well as to illustrate the standard error estimation and the test of hypothesis considered.The sensitivity of the ML estimates as well as the mean imputed and listwise deletion estimates to missing data mechanisms is investigated using three artificial data sets that are missing completely at random (MCAR), missing at random (MAR), and neither MCAR nor MAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.