Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as early warning scores (EWS). The predictive performance of EWSs yields a tradeoff between sensitivity and specificity that can lead to negative outcomes for the patient. Previous work on electronic health records (EHR) trained artificial intelligence (AI) systems offers promising results with high levels of predictive performance in relation to the early, real-time prediction of acute critical illness. However, without insight into the complex decisions by such system, clinical translation is hindered. Here, we present an explainable AI early warning score (xAI-EWS) system for early detection of acute critical illness. xAI-EWS potentiates clinical translation by accompanying a prediction with information on the EHR data explaining it.
Bone marrow cellularity is an important measure in diagnostic hematopathology. Currently, the gold standard for bone marrow cellularity estimation is manual inspection of hematoxylin and eosin stained whole slide images (H&E WSI) by hematopathologists. However, these assessments are subjective and subject to interobserver and intraobserver variability. This may be reduced by using a computer-assisted estimate of bone marrow cellularity. The aim of this study was to develop a fully automated algorithm to estimate bone marrow cellularity in H&E WSI stains using bone marrow segmentation. Data consisted of eight bone marrow H&E WSIs extracted from eight subjects. An algorithm was developed to estimate the bone marrow cellularity consisting of biopsy segmentation, tissue classification, and bone marrow segmentation. Segmentations of the red and yellow bone marrow (YBM) were used to estimate the bone marrow cellularity within the WSI H&E stains. The DICE coefficient between automatic tissue segmentations and ground truth segmentations conducted by an experienced hematopathologist were used for validation. Furthermore, the agreement between the automatic and two manual cellularity estimates was assessed using Bland-Altman plots and intraclass correlation coefficients (ICC). The validation of the bone marrow segmentation demonstrated an average DICE of 0.901 and 0.920 for the red and YBM, respectively. A mean cellularity estimate difference of −0.552 and − 7.816 was obtained between the automatic cellularity estimates and two manual cellularity estimates, respectively. An ICC of 0.980 (95%CI: 0.925-0.995, P-value: 5.51 × 10 −7 ) was obtained between the automatic and manual cellularity estimates based on manual annotations. The study demonstrated that it was possible to obtain bone marrow cellularity estimates with a good agreement with bone marrow cellularity estimates obtained from an experienced hematopathologist.
Quantitative susceptibility mapping (QSM) reveals pathological changes in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. QSM requires multiple processing steps after the acquisition of magnetic resonance imaging (MRI) phase measurements such as unwrapping, background field removal and the solution of an ill-posed field-to-source-inversion. Current techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and lead to suboptimal or over-regularized solutions requiring a careful choice of parameters that make a clinical application of QSM challenging. We have previously demonstrated that a deep convolutional neural network can invert the magnetic dipole kernel with a very efficient feed forward multiplication not requiring iterative optimization or the choice of regularization parameters. In this work, we extended this approach to remove background fields in QSM. The prototype method, called SHARQnet, was trained on simulated background fields and tested on 3 T and 7 T brain datasets. We show that SHARQnet outperforms current background field removal procedures and generalizes to a wide range of input data without requiring any parameter adjustments. In summary, we demonstrate that the solution of ill-posed problems in QSM can be achieved by learning the underlying physics causing the artifacts and removing them in an efficient and reliable manner and thereby will help to bring QSM towards clinical applications.
Quantitative susceptibility mapping (QSM) reveals pathological changes in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. QSM requires multiple processing steps after the acquisition of magnetic resonance imaging (MRI) phase measurements such as unwrapping, background field removal and the solution of an ill-posed field-to-source-inversion. Current techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and lead to suboptimal or over-regularized solutions requiring a careful choice of parameters that make a clinical application of QSM challenging. We have previously demonstrated that a deep convolutional neural network can invert the magnetic dipole kernel with a very efficient feed forward multiplication not requiring iterative optimization or the choice of regularization parameters. In this work, we extended this approach to remove background fields in QSM. The prototype method, called SHARQnet, was trained on simulated background fields and tested on 3T and 7T brain datasets. We show that SHARQnet outperforms current background field removal procedures and generalizes to a wide range of input data without requiring any parameter adjustments. In summary, we demonstrate that the solution of ill-posed problems in QSM can be achieved by learning the underlying physics causing the artifacts and removing them in an efficient and reliable manner and thereby will help to bring QSM towards clinical applications.
We developed an explainable artificial intelligence (AI) early warning score (xAI-EWS) system for early detection of acute critical illness. While maintaining a high predictive performance, our system explains to the clinician on which relevant electronic health records (EHRs) data the prediction is grounded. Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as Early Warning Scores (EWS). The predictive performance of EWSs yields a tradeoff between sensitivity and specificity that can lead to negative outcomes for the patient. [1][2][3] Previous work on EHR-trained AI systems offers promising results with high levels of predictive performance in relation to the early, real-time prediction of acute critical illness. [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21] However, without insight into the complex decisions by such system, clinical translation is hindered. In this paper, we present our xAI-EWS system, which potentiates clinical translation by accompanying a prediction with information on the EHR data explaining it.Artificial Intelligence (AI) is capable of predicting acute critical illness earlier and with greater accuracy than traditional Early Warning Score (MEWS) systems, such as modified EWSs (MEWSs) and Sequential Organ Failure Assessment Scores (SOFAs). 4, 8, 9, 11-13, 15, 17-19, 22-26 Unfortunately, standard deep learning (DL) that comprise available AI models are black-boxes and their predictions cannot readily be explained to clinicians. The importance of explainable and transparent DL algorithms in clinical medicine is without question and was recently highlighted in the Nature Medicine review by Topol, E. J. 27,28 Transparency and explainability are an absolute necessity for the widespread introduction of AI models into clinical practice, where an incorrect prediction can have grave consequences. [28][29][30][31] Clinicians must be able to understand the underlying reasoning of AI models so they can trust the predictions and be able to identify individual cases in which an AI model potentially gives incorrect predictions. [28][29][30]32 In this paper, we will present xAI-EWS, which comprises a robust and accurate AI model for predicting acute critical illness from Electronic Health Records (EHRs). Importantly, xAI-EWS was designed to provide explanations for the given predictions. To demonstrate the general clinical relevance of the xAI-EWS, we present results here from three emergency medicine cases: sepsis, Acute Kidney Injury (AKI), and Acute Lung Injury (ALI). The xAI-EWS is composed of a temporal convolutional network (TCN) [33][34][35] prediction module and a deep Taylor decomposition (DTD) 36-40 explanation module, tailored to temporal explanations (see figure 1). The architecture of the TCN has proven to be particularly effective at predicting events that ha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.