Epsilon-near-zero-materials (ENZ-materials) and their unique properties are key to the successful integration and miniaturization of optical components. Novel concepts, which promise significant progress in this field of research, such as optical switches and thin film electro-optical modulators, are possible when the electrical and optical properties of ENZ-materials are carefully exploited. To achieve a greater understanding of these properties, in this paper the electrical conductivity, optical transmittance, as well as absorption of thin indium tin oxide films, are investigated and linked to their laser-induced damage threshold in the ultra-short pulse regime. To the best of the authors’ knowledge, this is the first concise study linking the electrical properties of indium tin oxide to its properties regarding high-power laser applications.
In this paper, the theoretical foundation of quantizing nanolaminates is explained, and the dependence of the optical band gap on quantum-well thickness is demonstrated. The production is investigated by applying molecular dynamics growth simulation and by correlating the results with layers deposited by ion beam sputtering and atomic layer deposition. The properties of manufactured nanolaminates are then compared to the theoretical behavior, and good agreement is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.