Ethnopharmacological relevance Since ancient times, herbal medicines have been applied in the treatment of cancer. Tea, derivative from the dried leaves of Camellia sinensis (L.) Kuntze plant is the most popular beverage globally after water and is available in various forms. Green tea has been expansively investigated for its beneficial properties of cancer prevention and therapy. The goal of the research: The current study was conducted to evaluate the hepaprotective character of methanolic green tea extract and its mechanism of action contrary to thioacetamide (TAA)-produced liver fibrosis of Sprague Dawley rats. Materials and Methods Thirty rodents were equally placed in 5 clusters including normal control, TAA group as a positive control, silymarin as standard drug control, and treatment groups consisting of high dose and a low dose Camellia sinensis. Rats in experimental clusters by mouth fed with C. sinensis at 250 mg/kg or 500 mg/kg daily for 2 months. After 60 days, all rats were sacrificed. Blood specimens were gathered for liver biochemical examination. Livers of all groups were dissected out and subjected to histopathological examination through the Hematoxylin and Eosin stain, Masson trichrome, and immunohistochemistry stains (PCNA). Liver tissue homogenate was also analyzed for antioxidant activity parameters. Results Gross morphological examination showed a regular liver architecture in C. sinensis fed collections compared to the TAA sets. Histology of rat’s liver fed with C. sinensis showed an important decrease in the liver index with hepatic cells propagation, mild cellular injury, and immunostaining showed significant down-expression of proliferating cell nuclear antigen (PCNA). TAA produced liver fibrosis through a significant increase in serum alanine transferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin. Total protein and albumin also decreased in the TAA group. Moreover, the reduction of antioxidant enzyme activity including superoxide dismutase and catalase as well as the increase in malondialdehyde was detected in the TAA control group. Meanwhile, an abnormal level of liver biochemical parameters was restored closer to the normal levels in serum of the C. sinensis-fed clusters. In addition, C. sinensis fed assemblies showed elevated antioxidative enzymes activity with a reduction in malondialdehyde level comparable to the levels in silymarin-treated rats. Conclusions Green tea potentially inhibited the progression of liver cirrhosis, down -regulation of PCNA proliferation, prevented oxidation of hepatocytes, recovered SOD and CAT enzymes, condensed MDA and reduced cellular inflammation.
This research in vivo assessed the impact of the ethanolic extract of Annona muricata (A. muricata) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in Sprague Dawley rats. The rats, gavaged precisely with two doses of A. muricata (250 mg/kg and 500 mg/kg) with TAA, presented a substantial reduction in the liver index and hepatocyte propagation, with much lower cell injury. These groups showed meaningfully down-regulated proliferating cell nuclear antigen (PCNA) in the liver and spleen, α-smooth muscle actin (α-SMA), and transforming growth factor-beta 1 (TGF-β1) in liver parenchymal tissue. The liver homogenate displayed enhanced antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) activity, along with a decrease in malondialdehyde (MDA) levels. The serum levels of bilirubin, total protein, albumin, and liver enzymes alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were returned to normal and were similar to that of the normal control and silymarin with TAA-treated groups. Oral acute toxicity revealed no evidence of any toxic symbols or mortality in rats, indicating the safety of A. muricata. Therefore, the normal microanatomy of hepatocytes, the clampdown of PCNA, α-SMA, TGF-β, improved antioxidant enzymes (SOD and CAT), and condensed MDA with repairs of liver biomarkers validate the hepatoprotective effect of A. muricata.
S100P protein in human breast cancer cells is associated with reduced patient survival and, in a model system of metastasis, it confers a metastatic phenotype upon benign mammary tumour cells. S100P protein possesses a C-terminal lysine residue. Using a multiwell assay, S100P is now shown for the first time to exhibit a strong, C-terminal lysine-dependent activation of tissue plasminogen activator (tPA), but not of urokinase-catalysed plasminogen activation. The presence of 10 μM calcium ions stimulates tPA activation of plasminogen 2-fold in an S100P-dependent manner. S100P physically interacts with both plasminogen and tPA, but not with urokinase. Cells constitutively expressing S100P exhibit detectable S100P protein on the cell surface, and S100P-containing cells show enhanced activation of plasminogen compared with S100P-negative control cells. S100P shows C-terminal lysine-dependent enhancement of cell invasion. An S100P antibody, when added to the culture medium, reduced the rate of invasion of wild-type S100P-expressing cells, but not of cells expressing mutant S100P proteins lacking the C-terminal lysine, suggesting that S100P functions outside the cell. The protease inhibitors, aprotinin or α-2-antiplasmin, reduced the invasion of S100P-expressing cells, but not of S100P-negative control cells, nor cells expressing S100P protein lacking the C-terminal lysine. It is proposed that activation of tPA via the C-terminal lysine of S100P contributes to the enhancement of cell invasion by S100P and thus potentially to its metastasis-promoting activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.