Calcium phosphate‐based composite (CPC) is the main biomaterial substitute used for bone repair. Properties affecting bioactivity of this composite vary depending on the types of calcium phosphate crystalline phases. Hence, in this study, bioactivity behavior of novel CPC cement by the incorporation of calcium phosphate (CP), which was obtained from fish bones, dicalcium phosphate dehydrate, and chitosan solution, was monitored in simulated body fluid (SBF). In advance, the microstructure of CP produced by heat treatment (annealing) of fish bone was evaluated at two different temperatures 600 and 900°C. The X‐ray diffraction (XRD) results showed that there was no secondary phase formation aside from natural hydroxyapatite (HA) in bones annealed; and the annealing process enhanced the crystallinity of CP phase in the bone matrix particularly when annealed at 900°C. After incubation of CPC cement in SBF, bone bonding ability and producing of biomimetic HA coat on the CPC cement surface were confirmed using XRD, fourier‐transform infrared spectroscopy, and scanning electron microscopy. The analysis results show that needle‐like and cauliflower apatite layer with the crystallite size about 100 nm was grown on the surface of CPC cement after 28 days incubation in SBF. Regardless of above findings, we conclude that varying the annealing temperature has tremendous effect on the production of natural HA from fish bone with required properties and the ultimate morphology of obtained CPC cements after soaking is directly depended on the degree of crystallinity of the prepared natural HA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.